ImageVerifierCode 换一换
格式:PPT , 页数:55 ,大小:2.93MB ,
资源ID:188019      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-188019-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021-2022学年新教材人教A版数学必修第二册课件:第9章 9-1-2 分层随机抽样 .ppt)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021-2022学年新教材人教A版数学必修第二册课件:第9章 9-1-2 分层随机抽样 .ppt

1、9.1 随机抽样 9.1.2 分层随机抽样 第九章 统计 学 习 任 务核 心 素 养 1通过实例,了解分层随机抽样的特点和适用范围(重点)2了解分层随机抽样的必要性,掌握各层样本量比例分配的方法(重点、难点)3 结合具体实例,掌握分层随机抽样的样本均值(重点)1通过对分层随机抽样的学习,培养数学抽象素养 2通过对分层随机抽样的应用,培养数据分析素养 情境导学探新知 NO.1 假设某地区有高中生2 400人,初中生10 900人,小学生11 000人此地区教育部门为了了解本地区中小学生的近视情况及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查 问题:你认为应当怎样抽取样本?知识点1

2、分层随机抽样的相关概念 1分层随机抽样的定义:一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行抽样,再把所有子总体中抽取的样本作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层 2比例分配:在分层随机抽样中,如果每层都与层的大小成比例,那么称这种样本量的分配方式为比例分配 简单随机合在一起样本量1(1)哪种情况下适合选用分层随机抽样?(2)简单随机抽样和分层随机抽样有什么区别和联系?提示(1)在个体之间差异较大的情形下,只要选取的分层变量合适,使得各层间差异明显、层内差异不大,分层随机抽样的效果一般会好于简单随机抽样(2)区

3、别:简单随机抽样是从总体中逐个抽取样本;分层随机抽样则首先将总体分成几层,在各层中按比例分配抽取样本 联系:抽样过程中每个个体被抽到的可能性相等;每次抽出个体后不再将它放回,即不放回抽样 1思考辨析(正确的画“”,错误的画“”)(1)在统计实践中选择哪种抽样方法关键是看总体容量的大小()(2)分层随机抽样中,个体数量较少的层抽取的样本数量较少,这是不公平的()(3)从全班50名同学中抽取5人调查作业完成情况适合用分层随机抽样()答案(1)(2)(3)2某校高三年级有男生500人,女生400人,为了解该年级学生的健康状况,从男生中任意抽取25人,从女生中任意抽取20人进行调查这种抽样方法是()A

4、简单随机抽样 B抽签法 C随机数表法D分层随机抽样 D 从男生500人中抽取25人,从女生400人中抽取20人,抽取的比例相同,因此用的是分层随机抽样 3某校有高一学生400人,高二学生380人,高三学生220人,现教育局督导组欲用分层随机抽样的方法抽取50名学生进行问卷调查,则下列判断正确的是()A高一学生被抽到的可能性最大 B高二学生被抽到的可能性最大 C高三学生被抽到的可能性最大 D每位学生被抽到的可能性相等 D 按照分层随机抽样,每个个体被抽到的概率是相等的,都等于50400380220 120 4某学院的A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分

5、层随机抽样的方法抽取一个容量为120的样本已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取_名学生 40 C专业的学生有1 200380420400(名),由分层随机抽样原理,应抽取120 4001 20040(名)知识点2 分层随机抽样中的总体平均数与样本平均数 1层2层 层个体数MN层样本量mn 层个体变量值X1,X2,XM Y1,Y2,YN 层样本的个体变量值 x1,x2,xmy1,y2,yn 1层2层 层总体平均数层样本平均数1层2层 总体平均数样本平均数2(1)可以用MxNyMNMMN x NMN y 估计总体平均数W吗?(2)在比例分配的分层随机抽样

6、中,可以直接用样本平均数 w 估计总体平均数W吗?提示(1)可以,因为用第1层的样本平均数 x 可以估计第1层的总体平均数 X,用第2层的样本平均数 y 可以估计第2层的总体平均数 Y 因此可以用MxNyMNMMN x NMN y 估计总体平均数W(2)在比例分配的分层随机抽样中,mMnN mnMN,可得MMN xNMN y mmn x nmn y w 因此,在比例分配的分层随机抽样中,可以直接用样本平均数w估计总体平均数W 5为了解我国13岁男孩的平均身高,从北方抽取了300个男孩,平均身高为1.60 m;从南方抽取了200个男孩,平均身高为1.50 m由此可估计我国13岁男孩的平均身高为(

7、)A1.57 m B1.56 m C1.55 m D1.54 m B 因为从北方抽取了300个男孩,平均身高为1.60 m,从南方抽取了200个男孩,平均身高为1.50 m,所以这500名13岁男孩的平均身高是1.63001.52005001.56(m),据此可估计我国13岁男孩的平均身高为1.56 m 合作探究释疑难 NO.2类型1 类型2 类型3 类型1 对分层随机抽样概念的理解【例1】(1)某政府机关在编人员共100人,其中副处级以上干部10人,一般干部70人,工人20人,上级部门为了了解该机关对政府机构改革的意见,要从中抽取20人,用下列哪种方法最合适()A抽签法B随机数法 C简单随机

8、抽样法D分层随机抽样法(2)分层随机抽样又称类型抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层随机抽样为保证每个个体等可能抽样,必须进行()A每层等可能抽样 B每层可以不等可能抽样 C所有层按同一抽样比等可能抽样 D所有层抽取的个体数量相同(1)D(2)C(1)总体由差异明显的三部分构成,应选用分层随机抽样法(2)保证每个个体等可能的被抽取是三种基本抽样方式的共同特征,为了保证这一点,分层随机抽样时必须在所有层都按同一抽样比等可能抽取 1使用分层随机抽样的前提 分层随机抽样的总体按一个或多个变量划分成若干个子总体,并且每一个个体属于且仅属于一个子总体,而层内个体间

9、差异较小 2使用分层随机抽样应遵循的原则(1)将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则(2)分层随机抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比等于抽样比 跟进训练 1下列问题中,最适合用分层随机抽样抽取样本的是()A从10名同学中抽取3人参加座谈会 B某社区有500个家庭,其中高收入的家庭125户,中等收入的家庭280户,低收入的家庭95户,为了了解生活购买力的某项指标,要从中抽取一个容量为100户的样本 C从1 000名工人中,抽取100人调查上班途中所用时间 D从生产流水线上,抽取样本检查产

10、品质量 B A中总体所含个体无差异且个数较少,适合用简单随机抽样;C和D中总体所含个体无差异且个数较多,不适合用分层随机抽样;B中总体所含个体差异明显,适合用分层随机抽样 类型2 分层随机抽样的应用【例2】某学校有在职人员160人,其中行政人员有16人,教师有112人,后勤人员有32人教育部门为了了解在职人员对学校机构改革的意见,要从中抽取一个容量为20的样本,请利用分层随机抽样的方法抽取,写出抽样过程 解 抽样过程如下:第一步,确定抽样比,样本容量与总体容量的比为 2016018 第二步,确定分别从三类人员中抽取的人数,从行政人员中抽取16182(人);从教师中抽取1121814(人);从后

11、勤人员中抽取32184(人)第三步,采用简单随机抽样的方法,抽取行政人员2人,教师人员14人,后勤人员4人 第四步,把抽取的个体组合在一起构成所需样本 分层随机抽样的步骤是什么?提示 分层随机抽样的步骤:跟进训练 2在一批电视中,有甲厂生产的56台,乙厂生产的42台,用分层随机抽样的方法从中抽取一个容量为14的样本 解(1)确定各厂被抽取电视机的台数,抽样比为14564217,故从甲厂抽取56178(台),从乙厂抽取42176(台)(2)在各厂用简单随机抽样抽取作为样本的电视机(3)合成每层抽样,组成样本 类型3 分层随机抽样中的计算问题【例3】(1)交通管理部门为了解机动车驾驶员(简称驾驶员

12、)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层随机抽样调查,假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A101B808 C1 212D2 012(2)将一个总体分为A,B,C三层,其个体数之比为532若用分层随机抽样方法抽取容量为100的样本,则应从C中抽取_个个体(3)分层随机抽样中,总体共分为2层,第1层的样本量为20,样本平均数为3,第2层的样本量为30,样本平均数为8,则该样本的平均数为_ 1在分层随机抽样中,N为总体容量,n为样本容量,如何确定各层的个体数?

13、提示 每层抽取的个体的个数为niNi nN,其中Ni为第i(i1,2,k)层的个体数,nN为抽样比 2在分层随机抽样中,总体容量、样本容量、各层的个体数、各层抽取的样本数这四者之间有何关系?提示 设总体容量为N,样本容量为n,第i(i1,2,k)层的个体数为Ni,各层抽取的样本数为ni,则 niNi nN,这四者中,已知其中三个可以求出另外一个(1)B(2)20(3)6(1)因为甲社区有驾驶员96人,并且在甲社区抽取的驾驶员的人数为12人,所以四个社区抽取驾驶员的比例为129618,所以驾驶员的总人数为(12212543)18808(人)(2)A,B,C三层个体数之比为532,总体中每个个体被

14、抽到的可能性相等,分层随机抽样应从C中抽取100 21020(个)个体(3)w202030330203086 在例3(2)中,A,B,C三层的样本的平均数分别为15,30,20,则样本的平均数为_ 20.5 由题意可知样本的平均数为 w55321535323025322020.5 进行分层随机抽样的相关计算时,常用到的2个关系(1)样本容量n总体的个数N该层抽取的个体数该层的个体数(2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比(3)样本的平均数和各层的样本平均数的关系为:w mmn xnmn yMMN xNMN y 跟进训练 3生物等级考试成绩位次由高到低分为A、B、C、D、E

15、各等级人数所占比例依次为A等级15%,B等级40%,C等级30%,D等级14%,E等级1%现采用分层抽样的方法,从参加生物等级考试的学生中抽取300人作为样本,则该样本中获得A或B等级的学生人数为()A95 B144 C120 D165 D 设该样本中获得A或B等级的学生人数为x,则 x3001540100,x165故选:D当堂达标夯基础 NO.31 2 3 4 1某学校为了了解三年级、六年级、九年级这三个年级之间的学生的课业负担情况,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A抽签法B简单随机抽样 C分层随机抽样D随机数法 C 根据年级不同产生差异及按人数比例抽

16、取易知应为分层随机抽样 1 2 3 4 2甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层随机抽样法抽取一个容量为90的样本,应在这三校分别抽取学生()A30人,30人,30人B30人,45人,15人 C20人,30人,40人D30人,50人,10人 1 2 3 4 B 先求抽样比 nN903 6005 4001 800 1120,再各层按抽样比分别抽取,甲校抽取3 600 112030(人),乙校抽取5 400 112045(人),丙校抽取1 800 112015(人),故选B 1 2 3 4 3某大学为了了解在校本科生对参加某

17、项社会实践活动的意向,拟采用分层随机抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4556,则应从一年级本科生中抽取_名学生 60 根据题意,应从一年级本科生中抽取的人数为4455630060 1 2 3 4 4一批产品中有一级品100个,二级品60个,三级品40个,用分层随机抽样法从这批产品中抽取一个容量为20的样本 请利用分层随机抽样的方法抽取,写出抽样过程 1 2 3 4 解 第一步:确定抽样比,因为1006040200,所以 20200 110,第二步:确定各层抽取的样本数,一级品:100 11010,二级品:60 1106,1 2 3 4 三级品:40 1104 第三步:采用简单随机抽样的方法,从各层分别抽取样本 第四步:把抽取的个体组合在一起构成所需样本 回顾本节知识,自我完成以下问题:(1)分层抽样的定义是什么?(2)分层抽样有什么特征?(3)如何应用分层抽样的比例分配求值?(4)如何用分层抽样中的样本平均数估计总体平均数?点击右图进入 课 后 素 养 落 实 谢谢观看 THANK YOU!

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3