1、章末综合测评(二)函数(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各组函数中,表示同一个函数的是()A.yx1和yB.yx0和y1C.f (x)x2和g(x)(x1)2D.f (x)和g(x)【解析】A、B中两函数的定义域不同;C中两函数的解析式不同.【答案】D2.函数f (x)的定义域是()A.1,)B.(,0)(0,)C.1,0)(0,)D.R【解析】要使函数有意义,需满足即x1且x0.【答案】C3.设集合A1,3,5,若f :x2x1是集合A到集合B的映射,则集合B可以是()A.0,2,3
2、B.1,2,3C.3,5 D.3,5,9【解析】当x1,3,5时对应的2x1的值分别为3,5,9.【答案】D4.已知f (x)x32x,则f (a)f (a)() 【导学号:60210069】A.0B.1 C.1D.2【解析】f (x)x32x是R上的奇函数,故f (a)f (a),f (a)f (a)0.【答案】A5.下列四个函数中,在(,0)上是增函数的为()A.f (x)x21 B.f (x)1C.f (x)x25x6 D.f (x)3x【解析】A、C、D选项中的三个函数在(,0)上都是减函数,只有B正确.【答案】B6.函数f (x)ax3bx4(a,b不为零),且f (5)10,则f
3、(5)等于()A.10 B.2C.6 D.14【解析】f (5)125a5b410,125a5b6,f (5)125a5b4(125a5b)4642.【答案】B7.已知函数f x2,则f (3)等于()A.8 B.9C.11 D.10【解析】f x222,f (x)x22,f (3)32211.【答案】C8.已知函数f (x)若f (2a2)f (a),则实数a的取值范围是()A.(,1)(2,)B.(1,2)C.(2,1)D.(,2)(1,)【解析】f (x)由函数图象(图略)知f (x)在(,)上是增函数,由f (2a2)f (a),得a2a20,解得2a0,解得m6.【答案】D11.如果
4、函数f (x)x2bxc对于任意实数t都有f (2t)f (2t),那么()A.f (2)f (1)f (4) B.f (1)f (2)f (4)C.f (4)f (2)f (1) D.f (2)f (4)f (1)【解析】由f (2t)f (2t),可知抛物线的对称轴是直线x2,再由二次函数的单调性,可得f (2)f (1)0)在区间8,8上有四个不同的根x1,x2,x3,x4,则x1x2x3x4等于()A.6 B.6C.8 D.8【解析】由f (x4)f (x)f (4x)f (x)函数图象关于直线x2对称.又函数f (x)在0,2上是增函数,且为奇函数,故f (0)0,故函数f (x)在
5、(0,2上大于0.根据对称性知函数f (x)在2,4)上大于0,同理推知f (x)在(4,8)上小于0,故在区间(0,8)上方程f (x)m(m0)的两根关于直线x2对称,故此两根之和等于4.f (6x)f (x2)4f (x2)f (x2)4f (x2)f (6x)4f (6x)f (6x).f (x)关于直线x6对称.此两根之和等于12.综上,四个根之和等于8.【答案】C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知函数f (x)则f (3)_. 【导学号:60210070】【解析】30,f (1)2113.f (3)3. 【答案】314.已知f (x
6、)为R上的减函数,则满足f f (1)的实数x的取值范围为_.【解析】f (x)在R上是减函数,1或x0.【答案】(,0)(1,)15.已知函数f (x)的图象如图1所示,则f (x)的解析式是_.图1【解析】设函数解析式为yaxb,利用待定系数法求解.【答案】f (x)16.对于定义在R上的任意函数f (x),若实数x0满足f (x0)x0,则称x0是函数f (x)的一个不动点.若二次函数f (x)x2ax1没有不动点,则实数a的取值范围是_.【解析】若二次函数f (x)x2ax1有不动点,则方程x2ax1x,即x2(a1)x10有实数解.(a1)24a22a3(a3)(a1)0,a3或a1
7、.当函数f (x)x2ax1没有不动点时,实数a的取值范围是3a1.【答案】3a1.所以函数的定义域是(1,).18.(本小题满分12分)若f (x)对xR恒有2f (x)f (x)3x1,求f (x).【解】2f (x)f (x)3x1,将中的x换为x,得2f (x)f (x)3x1,联立,得把f (x)与f (x)看成未知数解得f (x)x1.19.(本小题满分12分)已知函数f (x)|x1|x1|(xR),(1)证明:函数f (x)是偶函数;(2)利用绝对值及分段函数知识,将函数解析式写成分段函数,然后画出函数图象;(3)写出函数的值域.【解】(1)由于函数定义域是R,且f (x)|x
8、1|x1|x1|x1|f (x).f (x)是偶函数.(2)f (x)图象如图所示:(3)由函数图象知,函数的值域为2,).20.(本小题满分12分)已知函数f (x).(1)判断函数在区间1,)上的单调性,并用定义证明你的结论;(2)求该函数在区间1,4上的最大值与最小值.【解】(1)f (x)在1,)上是增函数.证明如下:任取x1,x21,),且x1x2,f (x1)f (x2).x1x20,所以f (x1)f (x2)0,f (x1)f (x2),所以函数f (x)在1,)上是增函数.(2)由(1)知函数f (x)在1,4上是增函数.最大值为f (4),最小值为f (1).21.(本小题
9、满分12分)大气中的温度随着高度的上升而降低,根据实测的结果上升到12 km为止温度的降低大体上与升高的距离成正比,在12 km以上温度一定,保持在55 .(1)当地球表面大气的温度是a 时,在x km的上空为y ,求a,x,y间的函数关系式;(2)问当地表的温度是29 时,3 km上空的温度是多少?【解】(1)由题设知,可设yakx(0x12,k12时,y55.所求的函数关系式为y(2)当a29,x3时,y29(5529)8,即3 km上空的温度为8 .22.(本小题满分12分)设函数f (x)的定义域为Ux|xR且x0,且满足条件f (4)1.对任意的x1,x2U,有f (x1x2)f (
10、x1)f (x2),且当x1x2时,有0.(1)求f (1)的值;(2)如果f (x6)f (x)2,求x的取值范围. 【导学号:60210071】【解】(1)因为对任意的x1,x2U,有f (x1x2)f (x1)f (x2),所以令x1x21,得f (11)f (1)f (1)2f (1),所以f (1)0.(2)设0x10.又因为当x1x2时,0,所以f (x2)f (x1)0,即f (x2)f (x1),所以f (x)在定义域内为增函数.令x1x24,得f (44)f (4)f (4)112,即f (16)2.当即x0时,原不等式可化为f x(x6)f (16).又因为f (x)在定义域上为增函数,所以x(x6)16,解得x2或x0,所以x2.所以x的取值范围为(2,).