ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:1.06MB ,
资源ID:185395      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-185395-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《新教材》2021-2022学年高中数学人教A版选择性必修第一册测评:1-4-2 第1课时 距离问题 WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《新教材》2021-2022学年高中数学人教A版选择性必修第一册测评:1-4-2 第1课时 距离问题 WORD版含解析.docx

1、1.4.2用空间向量研究距离、夹角问题第1课时距离问题课后篇巩固提升必备知识基础练1.若O为坐标原点,OA=(1,1,-2),OB=(3,2,8),OC=(0,1,0),则线段AB的中点P到点C的距离为()A.1652B.214C.53D.532解析OP=12(OA+OB)=12(4,3,6)=2,32,3,OC=(0,1,0),PC=OC-OP=-2,-12,-3,|PC|=4+14+9=532.答案D2.在棱长为1的正方体ABCD-A1B1C1D1中,E为A1D1的中点,则点C1到直线CE的距离为()A.13B.33C.53D.63解析建立空间直角坐标系,如图,则C(1,1,0),C1(1

2、,1,1),E0,12,1,所以EC=1,12,-1,CC1=(0,0,1),所以点C1到直线EC的距离d=|CC1|2-|CC1EC|EC|2=1-49=53.故选C.答案C3.在棱长为a的正方体ABCD-A1B1C1D1中,M是AA1的中点,则点A1到平面MBD的距离是()A.6a6B.3a6C.3a4D.6a3解析建立如图所示的空间直角坐标系,则D(0,0,0),Ma,0,a2,B(a,a,0),A1(a,0,a),DM=a,0,a2,DB=(a,a,0),DA1=(a,0,a).设平面MBD的法向量为n=(x,y,z),则nDM=0,nDB=0,即ax+a2z=0,ax+ay=0,令x

3、=1,则y=-1,z=-2,可得n=(1,-1,-2).点A1到平面MBD的距离d=|DA1n|n|=|a-2a|6=66a.答案A4.如图,P为矩形ABCD所在平面外一点,PA平面ABCD.若已知AB=3,AD=4,PA=1,则点P到直线BD的距离为.解析如图,分别以AB,AD,AP所在直线为x轴、y轴、z轴建立空间直角坐标系,则P(0,0,1),B(3,0,0),D(0,4,0),PB=(3,0,-1),BD=(-3,4,0),点P到直线BD的距离d=|PB|2-PBBD|BD|2=10-952=135.答案1355.如图,直三棱柱ABC-A1B1C1的侧棱AA1=3,在ABC中,ACB=

4、90,AC=BC=1,则点B1到平面A1BC的距离为.解析如图所示,建立空间直角坐标系,则A(1,0,0),B(0,1,0),C(0,0,0),A1(1,0,3),B1(0,1,3),C1(0,0,3),A1B=(-1,1,-3),A1C=(-1,0,-3),A1B1=(-1,1,0).设平面A1BC的法向量为n=(x,y,z),则nA1B=0,nA1C=0,即-x+y-3z=0,-x-3z=0.令z=1得x=-3,y=0,n=(-3,0,1).点B1到平面A1BC的距离d=|nA1B1|n|=32.答案326.已知正方形ABCD的边长为1,PD平面ABCD,且PD=1,E,F分别为AB,BC

5、的中点.(1)求点D到平面PEF的距离;(2)求直线AC到平面PEF的距离.解(1)建立以D为坐标原点,DA,DC,DP分别为x轴、y轴、z轴正方向的空间直角坐标系,如图所示.则P(0,0,1),A(1,0,0),C(0,1,0),E1,12,0,F12,1,0,所以EF=-12,12,0,PE=1,12,-1,DE=1,12,0,设平面PEF的法向量n=(x,y,z),则nEF=0,nPE=0,即-12x+12y=0,x+12y-z=0.令x=2,则y=2,z=3,所以n=(2,2,3),所以点D到平面PEF的距离d=|DEn|n|=|2+1|4+4+9=31717,因此点D到平面PEF的距

6、离为31717.(2)因为E,F分别为AB,BC的中点,所以EFAC.又因为AC平面PEF,EF平面PEF,所以AC平面PEF.因为AE=0,12,0,所以点A到平面PEF的距离d=|AEn|n|=117=1717.所以直线AC到平面PEF的距离为1717.关键能力提升练7.如图,已知正方形ABCD的边长为4,E,F分别是AB,AD的中点,GC平面ABCD,且GC=2,则点B到平面EFG的距离为()A.1010B.21111C.35D.1解析以C为坐标原点,CD所在直线为x轴,CB所在直线为y轴,CG所在直线为z轴,建立空间直角坐标系,则F(4,2,0),E(2,4,0),G(0,0,2),B

7、(0,4,0),BE=(2,0,0),FE=(-2,2,0),EG=(-2,-4,2).设平面EFG的法向量为m=(x,y,z),则mFE=0,mEG=0,即-2x+2y=0,-2x-4y+2z=0.令x=1,则y=1,z=3,则m=(1,1,3),点B到平面EFG的距离d=|BEm|m|=21111.答案B8.在空间直角坐标系中,定义:平面的一般方程为Ax+By+Cz+D=0(A,B,C,DR,且A,B,C不同时为零),点P(x0,y0,z0)到平面的距离d=|Ax0+By0+Cz0+D|A2+B2+C2,则在底面边长与高都为2的正四棱锥P-ABCD中,底面中心O到侧面PAB的距离d等于()

8、A.55B.255C.2D.5解析以底面中心O为坐标原点,建立空间直角坐标系Oxyz,如图,则O(0,0,0),A(1,1,0),B(-1,1,0),P(0,0,2).设平面PAB的方程为Ax+By+Cz+D=0,将A,B,P三点的坐标代入计算得A=0,B=-D,C=-12D,所以方程可化为-Dy-12Dz+D=0,即2y+z-2=0,所以d=|20+0-2|22+12=255.答案B9.(2020山东威海高二期中)如图,在棱长为a的正方体ABCD-A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E,F为CD上两个动点,且EF的长为定值,则点Q到平面PEF的距离()A.等于55

9、aB.和EF的长度有关C.等于23aD.和点Q的位置有关解析取B1C1的中点G,连接PG,CG,DP,则PGCD,点Q到平面PEF的距离即点Q到平面PGCD的距离,与EF的长度无关,故B错误.又A1B1平面PGCD,点A1到平面PGCD的距离即点Q到平面PGCD的距离,即点Q到平面PEF的距离,与点Q的位置无关,故D错误.如图,以点D为坐标原点,建立空间直角坐标系,则C(0,a,0),D(0,0,0),A1(a,0,a),Pa2,0,a,DC=(0,a,0),DA1=(a,0,a),DP=a2,0,a.设n=(x,y,z)是平面PGCD的法向量,则由nDP=0,nDC=0,得a2x+az=0,

10、ay=0,令z=1,则x=-2,y=0,所以n=(-2,0,1)是平面PGCD的一个法向量.设点Q到平面PEF的距离为d,则d=|DA1n|n|=|-2a+a|5=5a5,故A正确,C错误.故选A.答案A10.(多选题)已知正方体ABCD-A1B1C1D1的棱长为1,点E是A1B1的中点,P在正方体内部且满足AP=34AB+12AD+23AA1,则下列说法正确的是()A.点A到直线BE的距离是55B.点A到直线BE的距离是255C.平面A1BD与平面B1CD1间的距离为33D.点P到直线AB的距离为2536解析如图,建立空间直角坐标系,则A(0,0,0),B(1,0,0),D(0,1,0),A

11、1(0,0,1),C1(1,1,1),D1(0,1,1),E12,0,1,所以BA=(-1,0,0),BE=-12,0,1.设ABE=,则cos=|BABE|BA|BE|=55,sin=1-cos2=255.故点A到直线BE的距离d1=|BA|sin=1255=255,故A错误,B正确.A1B=(1,0,-1),A1D=(0,1,-1),A1D1=(0,1,0).设平面A1BD的法向量为n=(x,y,z),则nA1B=0,nA1D=0,所以x-z=0,y-z=0,令z=1,得y=1,x=1,所以n=(1,1,1).所以点D1到平面A1BD的距离d2=|A1D1n|n|=13=33.因为易证得平

12、面A1BD平面B1CD1,所以平面A1BD与平面B1CD1间的距离等于点D1到平面A1BD的距离,所以平面A1BD与平面B1CD1间的距离为33,故C正确.因为AP=34AB+12AD+23AA1,所以AP=34,12,23,又AB=(1,0,0),则|APAB|AB|=34,所以点P到AB的距离d3=|AP|2-|APAB|AB|2=181144-916=56,故D错误.答案BC11.棱长为1的正方体ABCD-A1B1C1D1中,E,F分别为BB1,C1C的中点,G为线段DD1上的点,且DG=13DD1,过E,F,G的平面交AA1于点H,则A1D1到平面EFGH的距离为.解析以点D为坐标原点

13、,直线DA,DC,DD1分别为x轴、y轴、z轴建立空间直角坐标系,如图所示.则E1,1,12,F0,1,12,G0,0,13,D1(0,0,1),A1(1,0,1),EF=(-1,0,0),FG=0,-1,-16,D1A1=(1,0,0),D1A1EF.又EF平面EFGH,D1A1平面EFGH,D1A1平面EFGH.A1D1到平面EFGH的距离,即为D1到平面EFGH的距离.设平面EFGH的一个法向量为n=(x,y,z),则nEF=0,nFG=0,即-x=0,y+16z=0,令z=6,则y=-1,n=(0,-1,6),又D1F=0,1,-12,点D1到平面EFGH的距离d=|D1Fn|n|=4

14、37=43737,A1D1到平面EFGH的距离为43737.答案4373712.正方体ABCD-A1B1C1D1的棱长为4,M,N,E,F分别为A1D1,A1B1,C1D1,B1C1的中点,则平面AMN与平面EFBD的距离为.解析如图所示,建立空间直角坐标系Dxyz,则A(4,0,0),M(2,0,4),D(0,0,0),B(4,4,0),E(0,2,4),F(2,4,4),N(4,2,4).EF=(2,2,0),MN=(2,2,0),AM=(-2,0,4),BF=(-2,0,4),EF=MN,BF=AM,EFMN,BFAM,EFBF=F,MNAM=M.平面AMN平面EFBD.设n=(x,y,

15、z)是平面AMN的法向量,则nMN=2x+2y=0,nAM=-2x+4z=0,解得x=2z,y=-2z.取z=1,则x=2,y=-2,得n=(2,-2,1).平面AMN到平面EFBD的距离就是点B到平面EFBD的距离.AB=(0,4,0),平面AMN与平面EFBD间的距离d=|nAB|n|=83.答案8313.如图,已知四边形ABCD为矩形,四边形ABEF为直角梯形,FAAB,AD=AF=FE=1,AB=2,ADBE.(1)求证:BEDE;(2)求点F到平面CBE的距离.解四边形ABCD为矩形,ADAB.又ADBE,ABBE=B,AD平面ABEF,又AD平面ABCD,平面ABCD平面ABEF.

16、FAAB,平面ABCD平面ABEF=AB,FA平面ABCD.FAAD.(1)证明:如图,建立空间直角坐标系,则B(0,2,0),C(1,2,0),D(1,0,0),E(0,1,1),F(0,0,1),BE=(0,-1,1),DE=(-1,1,1),BEDE=0(-1)+(-1)1+11=0,BEDE,BEDE.(2)由(1)得BC=(1,0,0),BE=(0,-1,1),FE=(0,1,0).设n=(x,y,z)是平面CBE的法向量,则由nBC=0,nBE=0,得x=0,-y+z=0,令y=1,得z=1,n=(0,1,1)是平面CBE的一个法向量.设点F到平面CBE的距离为d,则d=|FEn|

17、n|=12=22.点F到平面CBE的距离为22.14.如图,在梯形ABCD中,ADBC,ABC=2,AB=BC=13AD=a,PA平面ABCD,且PA=a,点F在AD上,且CFPC.(1)求点A到平面PCF的距离;(2)求AD到平面PBC的距离.解(1)由题意知AP,AB,AD两两垂直,建立空间直角坐标系,如图.则A(0,0,0),B(a,0,0),C(a,a,0),D(0,3a,0),P(0,0,a).设F(0,m,0),则CF=(-a,m-a,0),CP=(-a,-a,a).PCCF,CFCP,CFCP=(-a)(-a)+(m-a)(-a)+0=a2-a(m-a)=0,m=2a,即F(0,

18、2a,0).设平面PCF的法向量为n=(x,y,z),则nCF=-ax+ay=0,nCP=-ax-ay+az=0,解得x=y,z=2x.取x=1,得n=(1,1,2).设点A到平面PCF的距离为d,由AC=(a,a,0),得d=|ACn|n|=a1+a1+026=63a.(2)由于BP=(-a,0,a),BC=(0,a,0),AP=(0,0,a).设平面PBC的法向量为n1=(x0,y0,z0),由n1BP=-ax0+az0=0,n1BC=ay0=0,得x0=z0,y0=0.取x0=1,得n1=(1,0,1).设点A到平面PBC的距离为h,ADBC,AD平面PBC,AD平面PBC,设h为AD到

19、平面PBC的距离,h=|APn1|n1|=a2=22a.学科素养创新练15.如图所示,在四棱锥P-ABCD中,侧面PAD底面ABCD,侧棱PA=PD=2,底面ABCD为直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2,问:线段AD上是否存在一点Q,使得它到平面PCD的距离为32?若存在,求出AQQD的值;若不存在,说明理由.解存在.取AD的中点O,在PAD中,PA=PD,POAD.又侧面PAD平面ABCD,平面PAD平面ABCD=AD,PO平面ABCD.建立如图所示的空间直角坐标系,易得A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1),则CP=(-1,0,1),CD=(-1,1,0).假设存在点Q,使它到平面PCD的距离为32,设Q(0,y,0)(-1y1),则CQ=(-1,y,0).设平面PCD的法向量为n=(x0,y0,z0),则nCP=0,nCD=0,-x0+z0=0,-x0+y0=0,即x0=y0=z0,取x0=1,则平面PCD的一个法向量为n=(1,1,1).点Q到平面PCD的距离d=|CQn|n|=|-1+y|3=32,y=-12或y=52(舍去).此时AQ=0,12,0,QD=0,32,0,则|AQ|=12,|QD|=32.存在点Q满足题意,此时AQQD=13.12

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3