1、1(2011高考浙江卷)若Px|x1,则()APQBQPCRPQ DQRP解析:选C.Px|x1,RPx|x1,RPQ.2设集合A4,5,7,9,B3,4,7,8,9,全集UAB,则集合U(AB)中的元素共有()A3个 B4个C5个 D6个解析:选A.UAB3,4,5,7,8,9,AB4,7,9,U(AB)3,5,8故选A.3设集合U1,2,3,4,5,A2,4,B3,4,5,C3,4,则(AB)(UC)_.解析:AB2,3,4,5,UC1,2,5,(AB)(UC)2,3,4,51,2,52,5答案:2,54已知全集U2,3,a2a1,A2,3,若UA1,则实数a的值是_解析:U2,3,a2a
2、1,A2,3,UA1,a2a11,即a2a20,解得a1或a2.答案:1或2A级基础达标1(2011高考大纲全国卷)设集合U1,2,3,4,M1,2,3,N2,3,4,则U(MN)()A1,2 B2,3C2,4 D1,4解析:选D.M1,2,3,N2,3,4,MN2,3又U1,2,3,4,U(MN)1,42已知集合U2,3,4,5,6,7,M3,4,5,7,N2,4,5,6,则()AMN4,6 BMNUC(UN)MU D(UM)NN解析:选B.由U2,3,4,5,6,7,M3,4,5,7,N2,4,5,6,得MN4,5,(UN)M3,4,5,7,(UM)N2,6,MN2,3,4,5,6,7U.
3、3(2010高考陕西卷)集合Ax|1x2,Bx|x1,则A(RB)()Ax|x1 Bx|x1Cx|1x2 Dx|1x2解析:选D.Bx|x1,RBx|x1,ARBx|1x24已知全集Ux|1x5,Ax|1xa,若UAx|2x5,则a_.解析:AUAU,Ax|1x2a2.答案:25设集合Ax|0x4,By|yx3,1x3,则R(AB)_.解析:Ax|0x4,By|4y0,AB0,R(AB)x|xR,且x0答案:x|xR,且x06已知全集UR,Ax|4x2,Bx|1x3,Px|x0或x,求AB,(UB)P,(AB)(UP)解:将集合A、B、P表示在数轴上,如图Ax|4x2,Bx|1x3,ABx|1
4、x2UBx|x1或x3,(UB)Px|x0或x,(AB)(UP)x|1x2x|0xx|0x2B级能力提升7已知集合UR,集合Ax|x4,Bx|3x3,则(UA)B()Ax|3x4Bx|2x3Cx|3x2或3x4Dx|2x4解析:选B.UAx|2x4由图可知:(UA)Bx|2x38.已知全集UZ,集合Ax|x2x,B1,0,1,2,则图中的阴影部分所表示的集合等于()A1,2 B1,0C0,1 D1,2解析:选A.依题意知A0,1,(UA)B表示全集U中不在集合A中,但在集合B中的所有元素,故图中的阴影部分所表示的集合等于1,29设全集U0,1,2,3,AxU|x2mx0,若UA1,2,则实数m的值为_解析:如图,U0,1,2,3,UA1,2,A0,3,方程x2mx0的两根为x10,x23,03m,即m3.答案:310设全集Ux|0x10,xN*,且AB3,A(UB)1,5,7,(UA)(UB)9,求A,B.解:如图所示,由图可得A1,3,5,7,B2,3,4,6,811设集合Ax|xm0,Bx|2x4,全集UR,且(UA)B,求实数m的取值范围解:由已知Ax|xm,UAx|xm,Bx|2x4,(UA)B,m2,即m2,m的取值范围是m2.高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 )