1、函数的表示方法 一、教学目标 总结函数三种表示方法毛 了解三种表示方法的优缺点 会根据具体情况选择适当方法4利用数形结合思想,据具体情况选用适当方法解决问题的能力二、重点难点: 重点: 认清函数的不同表示方法,知道各自优缺点 能按具体情况选用适当方法 难点 函数表示方法的应用 三、合作探究 提出问题,创设情境 我们在上节课里已经看到或亲自动手用列表格写式子和画图象的方法表示了一些函数这三种表示函数的方法分别称为列表法、解析式法和图象法 那么,请同学们思考一下,从前面的例子看,你认为三种表示函数的方法各有什么优缺点?在遇到具体问题时,该如何选择适当的表示方法呢? 这就是我们这节课要研究的内容 表
2、示方法全面性准确性直观性形象性列表法解析式法图象法 从所填表中可清楚看到三种表示方法各有优缺点在遇到实际问题时,就要根据具体情况、具体要求选择适当的表示方法,有时为了全面地认识问题,需要几种方法同时使用 四、精讲精练 例:一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度t/时012345y/米1010051010101510201025 由记录表推出这5小时中水位高度y(米)随时间t(时)变化的函数解析式,并画出函数图象 据估计这种上涨的情况还会持续2小时,预测再过2小时水位高度将达到多少米? 解:由表中观察到开始水位高10米,以后每隔1小时,水位升高005米,这样的规律可以表
3、示为: y=005t+10(0t7)这个函数的图象如下图所示: 再过2小时的水位高度,就是t=5+2=7时,y=005t+10的函数值,从解析式容易算出:y=0057+10=1035 从函数图象也能得出这个值数 2小时后,预计水位高1035米 就上面的例子中提几个问题大家思考: 函数自变量t的取值范围:0t7是如何确定的? 2小时后的水位高是通过解析式求出的呢,还是从函数图象估算出的好? 函数的三种表示方法之间是否可以转化? 从题目中可以看出水库水位在5小时内持续上涨情况,且估计这种上涨情况还会持续2小时,所以自变量t的取值范围取0t7,超出了这个范围,情况将难以预计 2小时后水位高通过解析式
4、求准确,通过图象估算直接、方便就这个题目来说,2小时后水位高本身就是一种估算,但为了准确而言,我认为还是通过解析式求出较好 从这个例子可以看出函数的三种不同表示法可以转化,因为题目中只给出了列表法,而我们通过分析求出解析式并画出了图象,所以我认为可以相互转化练习:用列表法与解析式法表示n边形的内角和m是边数n的函数 用解析式与图象法表示等边三角形周长L是边长a的函数 3、 甲车速度为20米秒,乙车速度为25米秒现甲车在乙车前面500米,设x秒后两车之间的距离为y米求y随x(0x100)变化的函数解析式,并画出函数图象 五、课堂小结通过本节课学习,我们认识了函数的三种不同的表示方法,并归纳总结出三种表示方法的优缺点,学会根据实际情况和具体要求选择适当的表示方法来解决相关问题,进一步知道了函数三种不同表示方法之间可以转化,为下面学习数形结合的函数做好了准备 六作业P108 8、9、102