1、人教版九年级数学上册第二十三章旋转章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 ABCD的位置,旋转角为(090)若1112,则的大小是()A
2、68B20C28D222、下面四个手机应用图标中是轴对称图形的是()ABCD3、将绕点旋转得到,则下列作图正确的是( )ABCD4、如图,在中,将绕点C逆时针旋转得到,点A,B的对应点分别为D,E,连接当点A,D,E在同一条直线上时,下列结论一定正确的是()ABCD5、已知点与点关于原点对称,则点的坐标()ABCD6、已知点P坐标为,将线段OP绕原点O逆时针旋转90得到线段,则点P的对应点的坐标为()ABCD7、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD8、某校举办了“送福迎新春,剪纸庆佳节”比赛以下参赛作品中,是中心对称图形的是()ABCD9、下列命题是真命题的是()A一个角
3、的补角一定大于这个角B平行于同一条直线的两条直线平行C等边三角形是中心对称图形D旋转改变图形的形状和大小10、如图,已知是等边三角形,边长为,将绕点逆时针旋转后点的对应点的坐标是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,直线,垂足为点是直线上的两点,且直线绕点按逆时针方向旋转,旋转角度为(1)当时,在直线上找点,使得是以为顶角的等腰三角形,此时_(2)当在什么范围内变化时,直线上存在点,使得是以为顶角的等腰三角形,请用不等式表示的取值范围:_2、如图,在平面直角坐标系中,一次函数的图像分别交、轴于点、,将直线绕点按顺时针方向旋转,交轴于点,则
4、直线的函数表达式是_3、如图,将的斜边AB绕点A顺时针旋转得到AE,直角边AC绕点A逆时针旋转得到AF,连结EF若,且,则_4、如图,在ABC中,BAC=90,AB=AC=10cm,点D为ABC内一点,BAD=15,AD=6cm,连接BD,将ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为_cm.5、如图,在直角坐标系中,ABC的顶点坐标分别为A(1,2),B(-2,2),C(-1,0)将ABC绕某点顺时针旋转90得到DEF,则旋转中心的坐标是_三、解答题(5小题,每小题10分,共计50分)1、正方形ABCD的边长为3,E、F分别是AB、B
5、C边上的点,且EDF=45.将DAE绕点D逆时针旋转90,得到DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长2、如图,先将绕点顺时针旋转得到,再将线段绕点顺时针旋转得到,连接、,且(1)若求证:、三点共线;求的长;(2)若,点在边上,求线段的最小值3、如图,在正方形网格中,的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹)(1)在图1中,作关于点对称的;(2)在图2中,作绕点顺时针旋转一定角度后,顶点仍在格点上的4、如图,D 是 的边 延长线上一点,连接 ,把 绕点 顺时针旋转 60恰好得到 ,其中,是对应点,若 ,求 的度数5、如图,在等腰ABC中,点D为直线BC上一
6、动点(点D不B、C重合),以AD为边向右侧作正方形ADEF,连接CF【猜想】如图,当点D在线段BC上时,直接写出CF、BC、CD三条线段的数量关系【探究】如图,当点D在线段BC的延长线上时,判断CF、BC,CD三条线段的数量关系,并说明理由【应用】如图,当点D在线段BC的反向延长线上时,点A、F分别在直线BC两侧,AEDF交点为点O连接CO,若,则 -参考答案-一、单选题1、D【解析】【分析】利用矩形的性质、旋转的性质及多边形内角和定理即可求得【详解】四边形ABCD为矩形,BAD=ABC=ADC=90,矩形ABCD绕点A顺时针旋转到矩形ABCD的位置,旋转角为,BAB=,BAD=BAD=90,
7、D=D=90,2=1=112,且ABC=D=90,BAB=90-68=22,即=22故选:D【考点】本题考查了旋转的性质,矩形的性质,多边形的内角和定理等知识,矩形性质的运用是关键2、D【解析】【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可【详解】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确故选D【考点】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重
8、合是解答此题的关键3、D【解析】【分析】把一个图形绕某一点O转动一个角度的图形变换叫做旋转.【详解】解:观察选项中的图形,只有D选项为ABO绕O点旋转了180.【考点】本题考察了旋转的定义.4、D【解析】【分析】由旋转可知,即可求出,由于,则可判断,即A选项错误;由旋转可知,由于,即推出,即B选项错误;由三角形三边关系可知,即可推出,即C选项错误;由旋转可知,再由,即可证明为等边三角形,即推出即可求出,即证明,即D选项正确;【详解】由旋转可知,点A,D,E在同一条直线上,故A选项错误,不符合题意;由旋转可知,为钝角,故B选项错误,不符合题意;,故C选项错误,不符合题意;由旋转可知,为等边三角形
9、,故D选项正确,符合题意;故选D【考点】本题考查旋转的性质,三角形三边关系,等边三角形的判定和性质以及平行线的判定利用数形结合的思想是解答本题的关键5、B【解析】【分析】根据关于原点对称点的坐标变化特征直接判断即可【详解】解:点与点关于原点对称,则点的坐标为,故选:B【考点】本题考查了关于原点对称点的坐标,解题关键是明确关于原点对称的两个点横纵坐标都互为相反数6、B【解析】【分析】如图,作轴于,轴于,证明,有,进而可得点坐标【详解】解:如图,作轴于,轴于,在和中,故选B【考点】本题考查了绕原点旋转90的点坐标,三角形全等的判定与性质解题的关键在于熟练掌握旋转的性质7、B【解析】【分析】利用轴对
10、称图形和中心对称图形的定义逐项判断即可【详解】A是轴对称图形不是中心对称图形故A不符合题意B是轴对称图形也是中心对称图形故B符合题意C是轴对称图形但不是中心对称图形故C不符合题意D不是中心对称图形也不是轴对称图形故D不符合题意故选:B【考点】本题考查轴对称图形和中心对称图形的定义,根据选项灵活判断其图形是否符合题意是解本题的关键8、D【解析】【详解】解:选项A,B,C中的图形不是中心对称图形,选项D中的图形是中心对称图形,故选D【考点】本题考查的是中心对称图形的识别,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形,掌握“中心对称图形的定义”是解本题的关键.9
11、、B【解析】【分析】由补角的定义、平行线公理,中心对称图形的定义、旋转的性质分别进行判断,即可得到答案【详解】解:A、一个角的补角不一定大于这个角,故A错误;B、平行于同一条直线的两条直线平行,故B正确;C、等边三角形是轴对称图形,不是中心对称图形,故C错误;D、旋转不改变图形的形状和大小,故D错误;故选:B【考点】本题考查了补角的定义、平行线公理,中心对称图形的定义、旋转的性质,以及判断命题的真假,解题的关键是熟练掌握所学的知识,分别进行判断10、B【解析】【分析】过点作于点过点作轴于点求出点的坐标,再利用全等三角形的性质求解【详解】解:过点作于点,过点作轴于点 是等边三角形,在和中,故选:
12、【考点】本题主要考查了等边三角形的判定与性质,旋转的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题二、填空题1、(1)或;(2)45135且90【解析】【分析】(1)先求出旋转后与的夹角,然后根据题意以点B为圆心,的长为半径作弧,与直线的交点P即为所求,利用锐角三角函数即可求出BC和OC,再利用勾股定理求出PC,从而求出结论;(2)当由图可知:当BCAB且A、B、P不共线时,直线上存在点,使得是以为顶角的等腰三角形,求出当BC=AB=时,的度数,然后根据题意即可求出结论【详解】解:(1)当时,此时与的夹角为9060=30以点B为圆心,的长为半径作弧,与直线的交点P即为所求,
13、即BP=AB=,过点B作BC, BC=OBsin30=1BP,OC=OBcos30=在直线上存在两个P点满足题意根据勾股定理PC=OP=OCPC或OP=OCPCOP=或故答案为:或;(2)当由图可知:当BCAB且A、B、P不共线时,直线上存在点,使得是以为顶角的等腰三角形,当BC=AB=时,sinBOC=BOC=45当点B在直线右侧时,90BOC=45;当点B在直线左侧时,90BOC=135;BCAB且A、B、P不共线时45135且90故答案为:45135且90【考点】此题考查的是锐角三角函数、作等腰三角形和勾股定理,掌握锐角三角函数、分类讨论的数学思想、勾股定理和利用极限思想求取值范围是解决
14、此题的关键2、【解析】【分析】先根据一次函数求得、坐标,再过作的垂线,构造直角三角形,根据勾股定理和正余弦公式求得的长度,得到点坐标,从而得到直线的函数表达式.【详解】因为一次函数的图像分别交、轴于点、,则,则过作于点,因为,所以由勾股定理得,设,则,根据等面积可得:,即,解得则,即,所以直线的函数表达式是【考点】本题综合考察了一次函数的求解、勾股定理、正余弦公式,以及根据一次函数的解求一次函数的表达式,要学会通过作辅助线得到特殊三角形,以便求解.3、【解析】【分析】由旋转的性质可得,由勾股定理可求EF的长【详解】解:由旋转的性质可得,且,故答案为【考点】本题考查了旋转的性质,勾股定理,灵活运
15、用旋转的性质是本题的关键4、【解析】【分析】过点A作AHDE,垂足为H,由旋转的性质可得 AE=AD=6,CAE=BAD=15,DAE=BAC=90,再根据等腰直角三角形的性质可得HAE=45,AH=3,进而得HAF=30,继而求出AF长即可求得答案.【详解】过点A作AHDE,垂足为H,BAC=90,AB=AC,将ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,AE=AD=6,CAE=BAD=15,DAE=BAC=90,DE=,HAE=DAE=45,AH=DE=3,HAF=HAE-CAE=30,AF=,CF=AC-AF=,故答案为.【考点】本题考查了旋转的性质,等腰直角三角形的性
16、质,勾股定理,解直角三角形等知识,正确添加辅助线构建直角三角形、灵活运用相关知识是解题的关键.5、(1,-1)【解析】【分析】由旋转的性质可得A的对应点为D,B的对应点为E,C的对应点为F,同时旋转中心在AD和BE的垂直平分线上,进而求出旋转中心坐标【详解】解:由旋转的性质,得A的对应点为D,B的对应点为E,C的对应点为F作BE和AD的垂直平分线,交点为P点P的坐标为(1,-1)故答案为:(1,-1)【考点】本题考查坐标与图形变化旋转,图形的旋转需结合旋转角求旋转后的坐标,常见的旋转角有30,45,60,90,180三、解答题1、 (1)见解析;(2).【解析】【分析】(1)由折叠可得DE=D
17、M,EDM为直角,可得出EDF+MDF=90,由EDF=45,得到MDF为45,可得出EDF=MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长【详解】(1)DAE逆时针旋转90得到DCM,DE=DM ,EDM=90,EDF + FDM=90,EDF=45,FDM =EDM
18、=45,DF= DF,DEFDMF,EF=MF(2) 设EF=x, AE=CM=1 , BF=BM-MF=BM-EF=4-x, EB=2,在RtEBF中,由勾股定理得,即,解得,.2、 (1)证明见详解;BG= 4(2)线段PD的最小值为2+ 2【解析】【分析】(1)由旋转的性质可得ACD= 90=BCE, AB= DE,BC= CE, AC= CD,ABC=DEC= 135,由等腰三角形的性质可得BEC = 45 =CBE,可证BEC +CED= 180,可得结论;通过证明四边形ABDG是矩形,可得AD= BG,由等腰直角三角形的性质可求解;(2)由垂线段最短可得当PDAB时,PD的长度有最
19、小值,先证点P,点E,点D三点共线,由勾股定理可求DE的长,由正方形的性质可得BC= PE= 2,即可求解.(1)证明:如图,连接AG,将ABC绕点C顺时针旋转90得到DEC,ABCDEC,ACD= 90=BCE,AB=DE,BC=CE,AC=CD,ABC =DEC= 135BEC= 45=CBE,BEC+CED=180 B、E、D三点共线;将线段DE绕点D顺时针旋转90得到DGDE= DG,EDG = 90AB= DE= DG,ABE=ABC-CBE=90,ABE+EDG = 180,AB/DG,四边形ABDG是平行四边形,又BDG = 90四边形ABDG是矩形, AD= BG,AC= CD
20、=4,ACD= 90, AD=AC= 4,BG= 4;(2)如图:点P在边AB上,当PDAB时,PD的长度有最小值由旋转的性质可得:ABC=CED=BCE= 90,BC/ DE,ABC+BPD= 180,DP/ BC,点P,点E,点D三点共线,AC= 2CE,BC=CE= 2,又ABC=BPE=BCE= 90,四边形BPEC是正方形,BC= PE= 2,CD= AC=4, CE= 2,CED = 90, DE=DP=2+2,线段PD的最小值为2+ 2【考点】本题是几何变换综合题,考查了旋转的性质,全等三角形的性质,等腰三角形的性质,矩形的判定和性质,勾股定理等知识,灵活运用这些性质解决问题是解
21、题的关键3、(1)见解析;(2)见解析【解析】【分析】(1)分别作出A,B,C三点关于O点对称的点,然后顺次连接即可得;(2)计算得出AB=,AC=5,再根据旋转作图即可【详解】(1)如图1所示;(2)根据勾股定理可计算出AB=,AC=5,再作图,如图2所示【考点】本题考查复杂-应用与设计,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题4、42【解析】【分析】根据旋转的性质得到,再根据计算解题即可【详解】解:把绕点A顺时针旋转60恰好得到, ,故答案为:【考点】本题考查旋转、角的和差等知识,是基础考点,掌握相关知识是解题关键5、【猜想】CD= BC- CF,理由见解析;【探究】CF
22、= BC+ CD,理由见解析;【应用】【解析】【分析】【猜想】 利用SAS证明BADCAF,得出BD= CF,然后根据线段的和差关系可得结论;【探究】利用SAS证明BADCAF,得出BD= CF,然后根据线段的和差关系可得出结论;【应用】 利用SAS证明BADCAF,得出BD= CF,ACF=ABD = 135,求出DCF= 90,在RtDCF中利用勾股定理求出DF,利用直角三角形的斜边中线的性质可得结论【详解】解:【猜想】CD= BC- CF,理由如下:BAC=90,AB=AC,ABC=ACB=45,四边形ADEF是正方形,AD= AF,DAF= 90=BAC,BAD=FAC,在BAD和CA
23、F中, ,BADCAF (SAS),BD= CF,CD= BC- BD,CD= BC- CF:解:【探究】CF= BC+ CD,理由如下:BAC= 90,AB= AC,ABC=ACB=45,四边形 ADEF是正方形, AD= AF,DAF= 90,BAD=BAC +DAC,CAF=DAF+DAC,在BAD和CAF中, ,BADCAF (SAS),BD= CF,BD= BCCD,CF= BC+CD;解:【应用】BAC= 90,AB= AC,ABC=ACB=45,四边形ADEF是正方形,AD= AF,DAF= 90,BAC=DAF,BAD=CAF,在BAD和CAF中,BADCAF (SAS),BD=CF,ACF=ABD= 180- 45= 135,,FCD=ACF-ACB = 90,FCD为直角三角形, ,CD= BC+ BD, CD = BC+CF= 2+1=3, ,正方形ADEF中,O为DF中点, ,故答案为: 【考点】本题是四边形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,正方形的性质,直角三角形斜边中线的性质等知识点,解题的关键是能够综合运用运用有关的知识解决问题