1、第 二 章 函 数第1节生活中的变量关系 教学设计现实世界充满着变量,一些变量之间存在着依赖关系,函数是揭示变量间依赖关系的重要的数学概念,它是现代数学最基本的概念,在解决实际问题中发挥着重要作用.本节内容主要学生更好的认识到生活处处有数学,只要做个有心人,我们可以随时随地学习数学一 教学目标:1. 通过生活中的实际例子,引起学生积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系能够利用初中对函数的认识,了解依赖关系与函数关系的联系与区别。 2. 培养学生类比分析问题的能力,并通过对现实生活中依赖关系的观察、分析归纳和比较来提高学生的实践能力二. 核心素养 1. 数学抽象:初中对函
2、数概念的理解2. 逻辑推理:借助初中所学的变量之间的关系,分析生活中变量的关系,将函数运用于实际生活中,更能体现数学知识无处不在3. 数学运算:根据变量之间的关系,列出相应函数关系式,从而解决实际问题4. 直观想象:通过有些函数图像的画法,了解什么是分段函数。5. 数学建模:利用函数变量的关系,对于生活中,牵扯到有关变量的实际问题,我们都可以构建数学模型,更好的解决一些问题。教学重点在于让学生领悟生活中处处有变量,变量之间充满了关系教学难点依赖关系和函数关系的差别PPT1. 知识探究: 例1:图2-1是某高速公路加油站的图片,加油站在地下常用圆柱体储油罐储存汽油等燃料.储油罐的长度d、截面半径
3、r是常量,油面高度h,油面宽度w、储汕量V是变量.思考: V,h,w之间是否具有关系结论:储油量V与油面高度h存在着依赖关系,也与油面宽度w存在着依赖关对于油面高度h的每一个取值,都有唯一的储油量V和它对应.但是,取一个油面宽度w的值,却对应着两个储汕量V例2自2008年京津城际列车开通运营以来,高速铁路在中国大陆迅猛发展.截至2017年年底,中国高铁运营里程突破25 000 km.图2-2表示的是中国高铁年运营里程的变化.思考: 高铁运营里程与年份的关系结论:观察图2-2,不难看出:(1)随着时间的变化,高铁运营里程在变化,它与年份存在着依赖关系;(2)从2008年到2017年,高铁年运营里
4、程是不断增加的,与前一年相比,2014年增长得最多同学回顾初中如何定义函数概念:有两个变量x和y,对于变量x的每一个值,变量y都有唯一确定的值和它对应,那么y就是x的函数,其中x是自变量,y是因变量.函数概念中需注意:凡是要确定两个变量具有函数关系,就要判断“对于变量x的每一个值, 变量y都有唯一确定的值和它对应”. 同学思考:例1中,V与h是否具有函数关系;V与w是否具有函数关系 例3弹簧的伸长量x与弹力y满足函数关系y=kx,其中k为劲度系数.对于变量“伸长量”的每一个值,变量“弹力”都有唯一确定的值和它对应,弹力y是伸长量x的函数.例4表2-1记录了几个不同气压下水的沸点:表2-1气压/
5、(105 Pa)0. 51.02. 05. 010沸点/0C82100121152180对于变量“气压”的每一个值,变量“沸点”都有唯一确定的值和它对应,沸点是气压的函数.例5绿化可以改变小环境气候.某市有甲、乙两个气温观测点,观测点甲的绿化优于观测点乙,图2-3是这两个观测点某一天的气温曲线图.为了方便比较,将两条曲线画在了同一直角坐标系中.每一条曲线都表示了一个函数关系,反映的都是对于“时间”的每一个值,都有唯一确定的“气温”值和它对应.例6国内某快递公司邮寄普通货物限重30 kg,从A城市到B城市的快递资费标准是:质量1 kg及以下收费12元,以后质量每增加1 kg收费增加8元,质量不足1kg按1kg 计算.请写出邮件的质量6 kg与邮资M元的函数解析式,并画出局部图象.解 依题意知邮件的质量6 kg与邮资M元的函数解析式为 形如上述的函数,一般叫作分段函数.生活中存在着许许多多的函数关系.正是函数概念中的关键词”每一个” “唯一”“对应”恰当地反映了事物特征.1.举出生活中具有函数关系的一些实例2.找出一个生活实例,说明两个变量之间存在依赖关系,但不是函数关系1. 判断量与量之间的关系:是函数关系还是依赖关系 2. 函数关系理解:每一个自变量有惟一确定因变量的值