ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:722.50KB ,
资源ID:177637      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-177637-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018年高考数学(理)人教A版一轮复习习题:第九章 解析几何 考点规范练48 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018年高考数学(理)人教A版一轮复习习题:第九章 解析几何 考点规范练48 WORD版含答案.doc

1、考点规范练48直线与圆、圆与圆的位置关系基础巩固1.设曲线C的方程为(x-2)2+(y+1)2=9,直线l的方程为x-3y+2=0,则曲线上的点到直线l的距离为的点的个数为()A.1B.2C.3D.42.已知圆M:x2+y2-2ay=0(a0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离3.已知直线l:x+ay-1=0(aR)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=()A.2B.4C.6D.24.(2016河南许昌、新乡、平顶山三模)经过原点并且

2、与直线x+y-2=0相切于点(2,0)的圆的标准方程是()A.(x-1)2+(y+1)2=2B.(x+1)2+(y-1)2=2C.(x-1)2+(y+1)2=4D.(x+1)2+(y-1)2=45.一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为()A.-或-B.-或-C.-或-D.-或-6.过点P(1,)作圆x2+y2=1的两条切线,切点分别为A,B,则=.7.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2,则圆C的面积为.8.若直线3x-4y+5=0与圆x2+y2=r2(r0)相交于A,B两

3、点,且AOB=120(O为坐标原点),则r=.9.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.(1)求证:对mR,直线l与圆C总有两个不同的交点;(2)设直线l与圆C交于A,B两点,若|AB|=,求直线l的倾斜角.10.已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.导学号37270494能力提升11.圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.

4、1B.2C.D.212.若直线y=x+b与曲线y=3-有公共点,则b的取值范围是()A.B.C.D.13.平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y-5=0B.2x+y+=0或2x+y-=0C.2x-y+5=0或2x-y-5=0D.2x-y+=0或2x-y-=0导学号3727049514.已知圆C:x2+y2+2x-4y+3=0.若圆C的切线在x轴和y轴上的截距的绝对值相等,求此切线的方程.15.(2016江苏,18)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设

5、圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围.导学号37270496高考预测16.若直线=1通过点M(cos ,sin ),则()A.a2+b21B.a2+b21C.1D.1参考答案考点规范练48直线与圆、圆与圆的位置关系1.B解析 由方程(x-2)2+(y+1)2=9,得圆心坐标为(2,-1),半径r=3,则圆心到直线l的距离d=由r=,故所求点的个数为2.2.B解析 圆M的方程可化为x2+(y-a)2=a2,故

6、其圆心为M(0,a),半径R=a.所以圆心到直线x+y=0的距离d=a.所以直线x+y=0被圆M所截弦长为2=2a,由题意可得a=2,故a=2.圆N的圆心N(1,1),半径r=1.而|MN|=,显然R-r|MN|R+r,所以两圆相交.3.C解析 依题意,直线l经过圆C的圆心(2,1),因此2+a-1=0,所以a=-1,因此点A的坐标为(-4,-1).又圆C的半径r=2,由ABC为直角三角形可得|AB|=又|AC|=2,所以|AB|=6.4.A解析 设圆心的坐标为(a,b),由题意可知解得故所求圆的标准方程是(x-1)2+(y+1)2=2.5.D解析 如图,作出点P(-2,-3)关于y轴的对称点

7、P0(2,-3).由题意知反射光线与圆相切,其反向延长线过点P0.故设反射光线为y=k(x-2)-3,即kx-y-2k-3=0.则圆心到直线的距离d=1,解得k=-或k=-6解析 如图,OA=1,AP=,又PA=PB,PB=APO=30.APB=60.=|cos 60=7.4解析 因为圆C的方程可化为x2+(y-a)2=2+a2,直线方程为x-y+2a=0,所以圆心坐标为(0,a),半径r2=a2+2,圆心到直线的距离d=由已知()2+=a2+2,解得a2=2,故圆C的面积为(2+a2)=4.8.2解析 如图,由题意知,圆心O到直线3x-4y+5=0的距离|OC|=1,故圆的半径r=2.9.(

8、1)证明 将已知直线l化为y-1=m(x-1);故直线l恒过定点P(1,1).因为=10,解得-m,故x0=,且x03.因为m=,所以x0=,整理得所以M的轨迹C的方程为+y2=(3)存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点.由(2)得M的轨迹C为一段圆弧,其两个端点为P,Q,直线L:y=k(x-4)过定点E(4,0),kPE=-,kQE=,当-k时,直线L与曲线C只有一个交点.当直线L与曲线C相切时,L的方程可化为kx-y-4k=0,则,解得k=综上所述,当-k或k=时,直线L与曲线C只有一个交点.11.C解析 由题意可知圆心坐标为(-1,0),故圆心到直线y=x+3的距

9、离d=,故选C.12.D解析 y=3-变形为(x-2)2+(y-3)2=4(0x4,1y3),表示以(2,3)为圆心,2为半径的下半圆,如图所示.若直线y=x+b与曲线y=3-有公共点,只需直线y=x+b在图中两直线之间(包括图中两条直线),y=x+b与下半圆相切时,圆心到直线y=x+b的距离为2,即=2,解得b=1-2或b=1+2(舍去),故b的取值范围为1-2b3.故选D.13.A解析 设与直线2x+y+1=0平行的直线方程为2x+y+m=0(m1).因为直线2x+y+m=0与圆x2+y2=5相切,即点(0,0)到直线2x+y+m=0的距离为,所以,即|m|=5.故所求直线的方程为2x+y

10、+5=0或2x+y-5=0.14.解 因为切线在两坐标轴上的截距的绝对值相等,所以切线的斜率为1或切线过原点.当k=1时,设切线方程为y=-x+b或y=x+c,分别代入圆C的方程得2x2-2(b-3)x+(b2-4b+3)=0或2x2+2(c-1)x+(c2-4c+3)=0.由于相切,则方程有两个相等的实数根,即b=3或b=-1,c=5或c=1.故所求切线方程为x+y-3=0,x+y+1=0,x-y+5=0,x-y+1=0.当切线过原点时,设切线方程为y=kx,即kx-y=0.由,得k=2所以此时切线方程为y=(2)x.综上可得切线方程为x+y-3=0,x+y+1=0,x-y+5=0,x-y+

11、1=0,(2-)x-y=0或(2+)x-y=0.15.解 因为圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以0y07,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.(2)因为直线lOA,所以直线l的斜率为=2.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离d=因为BC=OA=2,而MC2=d2+,所以25=+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.(3)设P(x1,y1),Q(x2,y2).因为A(2,4),T(t,0),所以因为点Q在圆M上,所以(x2-6)2+(y2-7)2=25.将代入,得(x1-t-4)2+(y1-3)2=25.于是点P(x1,y1)既在圆M上,又在圆2+(y-3)2=25上,从而圆(x-6)2+(y-7)2=25与圆2+(y-3)2=25有公共点,所以5-55+5,解得2-2t2+2因此,实数t的取值范围是.16.D解析 因为点M(cos ,sin )在圆x2+y2=1上,又直线=1过点M,所以直线与圆相交或相切.所以1,所以1.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3