ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:1.16MB ,
资源ID:175511      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-175511-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020届高考理数二轮复习常考题型大通关(全国卷):第18题 空间向量与立体几何 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020届高考理数二轮复习常考题型大通关(全国卷):第18题 空间向量与立体几何 WORD版含答案.doc

1、 高考资源网() 您身边的高考专家第18题 空间向量与立体几何1、如图所示,是边长为2的正方形,平面,且.1.求证:平面平面;2.线段上是否存在一点F,使二面角所成角的余弦值为?若存在,请找出点F的位置;若不存在,请说明理由.2、如图,与都是边长为2的正三角形,平面平面,平面,. (1)证明:直线平面(2)求直线与平面所成的角的大小;(3)求平面与平面所成的二面角的正弦值.3、如图,在三棱锥DABC中,平面ABC,且,E为BD的中点(1) 求异面直线AE与BC所成角的余弦值;(2) 求二面角ACEB的余弦值4、如图,在正四棱柱中,.(1) 求异面直线与所成角的余弦值;(2) 求平面与平面所成二

2、面角的正弦值5、如图,矩形中, ,点F是上的动点.现将矩形沿着对角线折成二面角,使得.1.求证:当时, ;2.试求的长,使得二面角的大小为.6、如图,在空间直角坐标系中,已知正四棱锥的高,点B,D和C,A分别在x轴和y轴上,且,点M是棱PC的中点(1) 求直线AM与平面所成角的正弦值;(2) 求二面角APBC的余弦值7、如图,在正方体中, 棱长为2,分别为的中点(1)证明:;(2)求与平面所成角的大小8、如图,在三棱锥中, , ,(1)证明: ;(2)求二面角的余弦值. 9、如图,在四棱锥中,底面为平行四边形.,且 底面.(1)证明:平面平面 (2)若Q为的中点,且,求二面角的大小. 10、如

3、图,三棱锥中,(1)求证:平面平面;(2)M是线段上一点,若求二面角的大小. 答案以及解析1答案及解析:答案:1.平面,平面,平面,又,平面,又平面,平面平面.2.如图所示,建立空间直角坐标系,.假设线段上存在一点F满足题意,易知:平面的一个法向量为,设平面的一个法向量为,由,得,取,得,.点F为线段的中点时,二面角所成角的余弦值为.解析: 2答案及解析:答案:(1)取CD中点O,连接MO,平面平面,则平面平面,所以MOAB 又面MCD,面MCD,所以面MCD(2)取中点,连,则,又平面平面,则平面.以为原点,直线、为轴,轴,轴,建立空间直角坐标系如图.,则各点坐标分别为,设直线与平面所成的角

4、为.因,平面的法向量为,则有,所以(3),.设平面的法向量为,由得.解得,取,又平面的法向量为,则设所求二面角为,则解析: 3答案及解析:答案:因为平面ABC,所以可以以A为坐标原点,建立如图所示的空间直角坐标系Axyz.因为,所以,因为E为线段BD的中点,所以.(1) ,所以,所以异面直线AE与BC所成角的余弦值为(2) 设平面ACE的法向量为,因为,所以,即且,取,得,所以是平面ACE的一个法向量设平面BCE的法向量为,因为,所以,即且,取,得,所以是平面BCE的一个法向量所以. 所以二面角ACEB的余弦值为解析: 4答案及解析:答案:(1) 以所在直线为x轴,y轴,z轴建立空间直角坐标系

5、,则,所以,所以.(2) 由题意得,所以,设平面的一个法向量为,则即令,则设平面的一个法向量为,则即令,则,所以,所以平面与平面所成二面角的正弦值为.解析: 5答案及解析:答案:1.连结.在矩形中, ,.在中,即.又在中, ,在中, ,又,平面.2.在矩形中,过D作于O,并延长交于E.沿着对角线翻折后,由可知, 两两垂直,以O为原点, 的方向为x轴的正方向建立空间直角坐标系,则平面,为平面的一个法向量.设平面的法向量为,由得取则即,.当时,二面角的大小是解析: 6答案及解析:答案:1. 记直线AM与平面所成的角为 ,则,设平面PAB的法向量为,所以即取,所以,即直线AM与平面PAB所成角的正弦

6、值为.2.设平面PBC的法向量为,由即取,所以,由图可知二面角APBC的余弦值为解析: 7答案及解析:答案:(1)如图,以点D为坐标原点,为x轴,为y轴,为z轴建立空间直角坐标系则, , , ,即 (2)易得, 设平面的一个法向量为,则 即令,则,所以设与平面所成角为 ,则 与平面所成角为解析: 8答案及解析:答案:(1)证明:平面,在平面内,.又,两两垂直,以点A为坐标原点分别为轴建立如图所示的空间直角坐标系,由题意得,. ,., ,同理可得,又,平面.(2)解设是平面的一个法向量,则令,则,由(1)得是平面APE的一个法向量,=,由图形得二面角为锐角,二面角的余弦值为.解析: 9答案及解析

7、:答案:(1)证明: 又底面 平面 平面平面平面(2)由1知,两两垂直 分别以为x轴,y轴,z轴建立空间直角坐标系 设得,,令,则 ., 故, 设平面的法向量为,则,令,得,即 易知平面的一个法向量为 则二面角的大小为. 解析: 10答案及解析:答案:(1)证明:如图,过点S作于点H,连接在中,由可得在中,由可得在中,由可得在中,由余弦定理得即在中,又平面平面平面平面(2)解:如图所示以点H为坐标原点,所在直线分别为x轴、y轴、z轴,在平面上垂直于的直线为y轴,建立空间直角坐标系,则则易知平面的一个法向量为,设平面的一个法向量为,则即令得于是又二面角为钝角,所以二面角为.解析: 高考资源网版权所有,侵权必究!

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3