ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:70KB ,
资源ID:175266      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-175266-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018年高考数学(理)一轮复习课时训练:第六章 不等式与推理证明 6-6 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018年高考数学(理)一轮复习课时训练:第六章 不等式与推理证明 6-6 WORD版含解析.doc

1、课时规范训练A组基础演练1用数学归纳法证明2n2n1,n的第一个取值应是()A1B2C3 D4解析:选C.当n1时,212,2113,2n2n1不成立;当n2时,224,2215,2n2n1不成立;当n3时,238,2317,2n2n1成立n的第一个取值应是3.2一个关于自然数n的命题,如果验证当n1时命题成立,并在假设当nk(k1且kN*)时命题成立的基础上,证明了当nk2时命题成立,那么综合上述,对于()A一切正整数命题成立 B一切正奇数命题成立C一切正偶数命题成立 D以上都不对解析:选B.n1为奇数,nk2为奇数故B项正确3用数学归纳法证明不等式1(nN*)成立,其初始值至少应取()A7

2、 B8C9 D10解析:选B.当n8时,1.4在数列an中,a1,且Snn(2n1)an,通过求a2,a3,a4,猜想an的表达式为()A. B.C. D.解析:选C.当n2时,a2(23)a2,a2.当n3时,a3(35)a3,a3.故猜想an.5对于不等式n1(nN*),某同学用数学归纳法证明的过程如下:(1)当n1时,11,不等式成立(2)假设当nk(kN*)时,不等式成立,即k1,则当nk1时,(k1)1.当nk1时,不等式成立,则上述证法()A过程全部正确Bn1验得不正确C归纳假设不正确D从nk到nk1的推理不正确解析:选D.在nk1时,没有应用nk时的假设,不是数学归纳法6用数学归

3、纳法证明“当n为正奇数时,xnyn能被xy整除”,当第二步假设n2k1(kN*)命题为真时,进而需证n_时,命题亦真解析:因为n为正奇数,所以与2k1相邻的下一个奇数是2k1.答案:2k17已知数列an满足a11,an1an1(nN*),通过计算a1,a2,a3,a4,可猜想an_.解析:a11,a2a11,a3a21,a4a31.由此可猜想an.答案:8设数列an的前n项和为Sn,且对任意的自然数n都有:(Sn1)2anSn,通过计算S1,S2,S3,猜想Sn_.解析:由(S11)2S得:S1;由(S21)2(S2S1)S2得:S2;由(S31)2(S3S2)S3得:S3.由此可猜想Sn.答

4、案:9设数列an各项均为正数,且满足an1ana.求证:对一切n2,都有an.证明:数列an各项均为正数,且满足an1ana,a2a1a0,解得0a11.当n2时,a2a1a(a1)2,不等式成立,假设当nk(k2)时,不等式成立,即ak,则当nk1时,ak1aka22,当nk1时,不等式也成立,由数学归纳法知,对一切n2,都有an.10已知数列an满足a1a2,an(n2,nN*)(1)求证:对任意nN*,an2;(2)判断数列an的单调性,并说明理由解:(1)证明:用数学归纳法证明an2(nN*)当n1时,a1a2,结论成立;假设nk(k1)时结论成立,即ak2,则nk1时,ak12,所以

5、nk1时,结论也成立故由及数学归纳法原理,知对一切的nN*,都有an2成立(2)an是单调递减的数列因为aaan2a(an2)(an1),又an2,所以aa0,所以an1an.故an是单调递减的数列B组能力突破1用数学归纳法证明123n2,则当nk1时左端应在nk的基础上加上()Ak21B(k1)2C.D(k21)(k22)(k23)(k1)2解析:选D.等式左边是从1开始的连续自然数的和,直到n2.故nk1时,最后一项是(k1)2,而nk时,最后一项是k2,应加上(k21)(k22)(k23)(k1)2.2用数学归纳法证明“n3(n1)3(n2)3(nN*)能被9整除”,利用归纳法假设证明n

6、k1时,只需展开()A(k3)3 B(k2)3C(k1)3 D(k1)3(k2)3解析:选A.假设nk时,原式k3(k1)3(k2)3能被9整除,当nk1时,(k1)3(k2)3(k3)3为了能用上面的归纳假设,只须将(k3)3展开,让其出现k3即可3下列代数式(其中kN*)能被9整除的是()A667k B27k1C2(27k1) D3(27k)解析:选D.(1)当k1时,显然只有3(27k)能被9整除(2)假设当kn(nN*)时,命题成立,即3(27n)能被9整除,那么当kn1时有3(27n1)21(27n)36.这就是说,kn1时命题也成立由(1)(2)知,命题对kN*成立4求证:(n2)

7、证明:当n2时,左边0右边,不等式成立假设当nk(k2,kN*)时,不等式成立即成立,那么nk1时,当nk1时,不等式成立据可知,不等式对一切nN*且n2时恒成立5已知点Pn(an,bn)满足an1anbn1,bn1(nN*),且点P1的坐标为(1,1)(1)求过点P1,P2的直线l的方程;(2)试用数学归纳法证明:对于nN*,点Pn都在(1)中的直线l上解:(1)由题意得a11,b11,b2,a21,P2.直线l的方程为,即2xy1.(2)证明:当n1时,2a1b121(1)1成立假设nk(k1且kN*)时,2akbk1成立则2ak1bk12akbk1bk1(2ak1)1,当nk1时,2ak1bk11也成立由知,对于nN*,都有2anbn1,即点Pn在直线l上

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3