1、八年级数学上册第十一章实数和二次根式专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列计算正确的是()ABCD2、在下列各数中是无理数的有(),(相邻两个之间有个),A个B个C个D个3、下列计算
2、正确的是()A2B2C2D24、下列各数中,与2的积为有理数的是()A2B3CD5、二次根式中的x的取值范围是()Ax2Bx2Cx2Dx26、式子有意义,则实数a的取值范围是()Aa-1Ba2Ca-1且a2Da27、化简的结果是()AB4CD28、定义:若,则,x称为以10为底的N的对数,简记为,其满足运算法则:例如:因为,所以,亦即;根据上述定义和运算法则,计算的结果为()A5B2C1D09、下列等式正确的是()A()2=3B=3C=3D()2=310、在实数中,最小的是()ABC0D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、比较下列各数的大小:(1) _3;(
3、2) _-2、8的立方根与 的平方根的和是_3、若a1,化简_4、计算:=_;=_.5、25的算数平方根是_,的相反数为_三、解答题(5小题,每小题10分,共计50分)1、计算(1) ;(2)2、(1)计算:;(2)因式分解:.3、求下列各式的值:(1);(2)4、小东在学习了=后,认为=也成立,因此他认为一个化简过程: 是正确的你认为他的化简对吗?说说理由5、计算:-参考答案-一、单选题1、C【解析】【分析】根据二次根式的性质和二次根式的运算法则分别判断【详解】解:A、不能合并,故选项错误;B、不能合并,故选项错误;C、,故选项正确;D、,故选项错误;故选:C【考点】本题考查了二次根式的混合
4、运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍2、B【解析】【分析】根据无理数是无限不循小数,可得答案【详解】解:,是无理数,故选:B【考点】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数3、A【解析】【分析】根据算数平方根的定义可判断:若一个正数的平方等于a,则这个正数就是a的算数平方根【详解】解:A、,选项正确,符合题意;B、,选项错误,不符合题意;C、,选项错误,不符合题意;D、,选项错误,不符合题意;故选:A【考点】本题考查了算术平方根的定义,解题
5、的关键是注意区别算数平方根和平方根4、D【解析】【分析】把A、B、C、D均与2相乘即可【详解】解:A、22=4为无理数,故不能;B. 36C. 2D. =6为有理数故选D【考点】本题考查二次根式乘法、积的算术平方根等概念,熟练掌握概念是解答问题的关键5、D【解析】【分析】根据“二次根式有意义满足的条件是被开方数是非负数”,可得答案【详解】由题意,得2x+40,解得x-2,故选D【考点】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键6、C【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可.【详解】解:由题意得,解得,a-1且a2,故答案为:C.【考点】本题
6、考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.7、D【解析】【分析】根据算术平方根的定义进行求解即可【详解】;故选D【考点】本题考查了算术平方根,熟练掌握算术平方根的定义是解题的关键8、C【解析】【分析】根据新运算的定义和法则进行计算即可得【详解】解:原式,故选:C【考点】本题考查了新定义下的实数运算,掌握理解新运算的定义和法则是解题关键9、A【解析】【分析】根据二次根式的性质把各个二次根式化简,判断即可【详解】解:()2=3,A正确,符合题意;=3,B错误,不符合题意;=,C错误,不符合题意;(-)2=3,D错误,不符合题意;故选A【考点】本题考查的是二次
7、根式的化简,掌握二次根式的性质:=|a|是解题的关键10、D【解析】【分析】由正数比负数大可知比小,又因为,所以最小的是【详解】,又故选:D【考点】本题考查了实数的大小比较,实数的比较中也遵循正数大于零,零大于负数的法则比较实数大小的方法较多,常见的有作差法、作商法、倒数法、数轴法、平方法、估算法二、填空题1、 ; 【解析】【分析】(1)根据数轴上表示的两个实数,右边的总比左边的大进行比较;(2)根据两个负数,绝对值大的反而小进行比较【详解】解:(1) ,3;(2) -3.143,-3.141,3.1433.141 -故答案为,【考点】本题考查了实数的大小比较,解题的关键是注意:正实数都大于0
8、,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小2、1或5【解析】【分析】先求出-8的立方根,由=9,根据平方根的定义求出9的平方根,然后求出它们的和即可【详解】解:-8的立方根为=-2,而=9,则9的平方根为=3,-2+3=1或-2-3=-5,故答案为:1或-5【考点】本题考查了立方根、平方根、算术平方根的定义,熟练掌握相关定义及求解方法是解题的关键.3、a【解析】【分析】根据a的范围,a10,化简二次根式即可【详解】解:a1,a10,|a1|1(a1)1a11a故答案为:a【点评】本题考查了二次根式的性质与化简,对于的化简,应先将其转化为绝对值形式,再去绝对值符号,即4、
9、 3【解析】【分析】能化简的先化简二次根式,再进行二次根式的乘除运算.【详解】解:(1)=;(2)=3.故答案为(1). (2). 3【考点】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键5、 5 3【解析】【分析】根据算术平方根的定义和实数的相反数分别填空即可【详解】25的算数平方根是5;的相反数为3;故答案为:5,3【考点】本题考查了实数的性质,主要利用了算术平方根,立方根的定义以及相反数的定义,熟记概念与性质是解题的关键三、解答题1、 (1);(2)【解析】【分析】(1)首先化简二次根式,之后进行实数的加减运算即可;(2)首先化简二次根式、计算零次幂,去绝对值,最后进行实数
10、加减运算即可(1)解:原式;(2)解:原式【考点】本题主要考查实数的运算,掌握二次根式的化简、零次幂运算、绝对值的性质是解题的关键2、(1);(2)【解析】【分析】(1)原式利用零指数幂、负整数指数幂的性质计算即可求出值;(2)原式利用平方差公式分解即可【详解】解:(1)原式;(2)原式;【考点】此题考查了实数运算与因式分解运用公式法,熟练掌握因式分解的方法是解本题的关键3、(1);(2)0【解析】【分析】(1)根据立方根定义先将原式中的和计算出来,然后再相加即可得到结果;(2)根据立方根定义先将原式中的、和计算出来,然后再加减即可得到结果【详解】(1);(2)【考点】本题考查立方根,熟练掌握立方根的性质是解决本题的关键4、错误;理由见解析.【解析】【分析】根据被开方数为非负数可得化简过程是错误的,然后进行二次根式的化简即可【详解】解:错误,原因是被开方数应该为非负数=2.故答案为错误.【考点】本题考查了二次根式的乘除法.5、【解析】【分析】按照绝对值的性质、乘方、零指数幂、二次根式的运算法则计算.【详解】解:原式.【考点】本题考查绝对值的性质、乘方、零指数幂、二次根式的运算法则,比较基础.