收藏 分享(赏)

2020届高考理数二轮复习常考题型大通关(全国卷):第14题 不等式 WORD版含答案.doc

上传人:高**** 文档编号:173819 上传时间:2024-05-25 格式:DOC 页数:7 大小:463.50KB
下载 相关 举报
2020届高考理数二轮复习常考题型大通关(全国卷):第14题 不等式 WORD版含答案.doc_第1页
第1页 / 共7页
2020届高考理数二轮复习常考题型大通关(全国卷):第14题 不等式 WORD版含答案.doc_第2页
第2页 / 共7页
2020届高考理数二轮复习常考题型大通关(全国卷):第14题 不等式 WORD版含答案.doc_第3页
第3页 / 共7页
2020届高考理数二轮复习常考题型大通关(全国卷):第14题 不等式 WORD版含答案.doc_第4页
第4页 / 共7页
2020届高考理数二轮复习常考题型大通关(全国卷):第14题 不等式 WORD版含答案.doc_第5页
第5页 / 共7页
2020届高考理数二轮复习常考题型大通关(全国卷):第14题 不等式 WORD版含答案.doc_第6页
第6页 / 共7页
2020届高考理数二轮复习常考题型大通关(全国卷):第14题 不等式 WORD版含答案.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第14题 不等式1、已知实数满足,则下列关系式正确的是_(填序号);2、已知均为实数,有下列命题:若,则;若,则;若,则.其中正确的命题是_.3、设,给出下列不等式:;.其中恒成立的是_(填序号).4、设,则A_B(填入“”或“”,“解析:由题意可知,则比较的大小,只需比较和的大小,只需比较和的大小,又由,所以,即,即. 5答案及解析:答案:解析:方法:,同理可得.方法二:令,则,故. 6答案及解析:答案:解析:,故答案为 7答案及解析:答案:解析:变形为恒成立 8答案及解析:答案:解析:因为,所以 ,令,则 当且,即或时取等号;另一方面,当时取等号所以 9答案及解析:答案:解析:令,方程的一

2、个根大于1,一个根小于1,由题意可得,. 10答案及解析:答案:解析:因为函数的定义域为R,所以对恒成立.当时,对定义域上的一切实数恒成立;当时,解得.综上所述,m的取值范围是. 11答案及解析:答案:19解析:不等式组表示的平面区域如图所示由得作出目标函数表示的直线,当该直线在y轴上的截距取到最大值,即经过点A时,目标函数取到最大值令,解得所以所以故答案为:19 12答案及解析:答案:解析:由题意,由,可求得交点坐标为,要使直线上存在点满足约束条件,如图所示,可得,则实数m的取值范围 13答案及解析:答案:2200解析:设购买甲厂木材x根,购买乙厂木材y根,支付的总费用为z元,那么满足,目标函数为,作出不等式组,所表示的平面区域,如图中阴影部分所示, 作出直线,即直线,平移该直线,当直线经过可行域上的点时,z取得最小值,即该活动中心支付的木材总费用最少为2200元. 14答案及解析:答案:解析: 设则,所以,当且仅当,即时等号成立,故的最小值为. 15答案及解析:答案:8解析:因为当且仅当时,等号成立,所以,解得或(舍去),所以的最小值为8,综上所述,答案是8.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3