收藏 分享(赏)

人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx

上传人:高**** 文档编号:1735418 上传时间:2024-06-11 格式:DOCX 页数:34 大小:656.16KB
下载 相关 举报
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第1页
第1页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第2页
第2页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第3页
第3页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第4页
第4页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第5页
第5页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第6页
第6页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第7页
第7页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第8页
第8页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第9页
第9页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第10页
第10页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第11页
第11页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第12页
第12页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第13页
第13页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第14页
第14页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第15页
第15页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第16页
第16页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第17页
第17页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第18页
第18页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第19页
第19页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第20页
第20页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第21页
第21页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第22页
第22页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第23页
第23页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第24页
第24页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第25页
第25页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第26页
第26页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第27页
第27页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第28页
第28页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第29页
第29页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第30页
第30页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第31页
第31页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第32页
第32页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第33页
第33页 / 共34页
人教版九年级数学上册第二十三章旋转章节训练练习题(解析版).docx_第34页
第34页 / 共34页
亲,该文档总共34页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十三章旋转章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点 A(x,y)在第二象限内,且x=2,y=3,则点A关于原点对称的点的坐标为()A(-2,3)B(2,-3)C(

2、-3,2)D(3,-2)2、如图,在坐标系中放置一菱形 OABC,已知ABC=60,点 B 在 y 轴上,OA=1,先将菱形 OABC 沿 x 轴的正方向无滑动翻转,每次翻转 60,连续翻转2019次,点 B 的落点依次为 B1,B2,B3,则 B2 019 的坐标为()A(1010,0)B(13105, )C(1345, )D(1346,0)3、下列图形中既是中心对称图形,又是轴对称图形的是()ABCD4、如图,已知正方形的边长为4,以点C为圆心,2为半径作圆,P是上的任意一点,将点P绕点D按逆时针方向旋转,得到点Q,连接,则的最大值是()A6BCD5、如图,在ABC中,ACB90,ACBC

3、,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE当ADBF时,BEF的度数是()A45B60C62.5D67.56、如图,中,若将绕点逆时针旋转得到,连接,则在点运动过程中,线段的最小值为()A1BCD27、如图,在矩形中,是矩形的对称中心,点、分别在边、上,连接、,若,则的值为()ABCD8、下列运动形式属于旋转的是()A在空中上升的氢气球B飞驰的火车C时钟上钟摆的摆动D运动员掷出的标枪9、如图,六边形ABCDEF的内角都相等,DAB60,ABDE,则下列结论:ABDE;EFADBC;AFCD;四边形ACDF

4、是平行四边形;六边形ABCDEF既是中心对称图形,又是轴对称图形其中成立的个数是()A2个B3个C4个D5个10、下列几何图形中,是轴对称图形但不是中心对称图形的是()A梯形B等边三角形C平行四边形D矩形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,CAB45,若CAB25,则旋转角的度数为 _2、在ABC 中,C=90,cm,cm,绕点 C 将ABC 旋转使一直角边的另一个端点落在直线AB 上一点 K,则线段 BK 的长为_ cm3、如图,点P是边长为1的正方形ABCD的对角线AC上的一个动点,点E是BC中点,连接PE,并将PE绕点P逆时针旋转12

5、0得到PF,连接EF,则EF的最小值是_4、如图,将绕点O旋转得到,若,则_,_,_5、如图,正方形ABCD的边长为6,点E在边CD上以点A为中心,把ADE顺时针旋转90至ABF的位置若DE2,则FE_三、解答题(5小题,每小题10分,共计50分)1、如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点)(1)将线段AB向上平移两个单位长度,点A的对应点为点,点B的对应点为点,请画出平移后的线段;(2)将线段绕点按逆时针方向旋转,点的对应点为点,请画出旋转后的线段;(3)连接、,求的面积2、如图,点A(a,0),B(0,b),且a、b满足(a2)2+|4

6、b8|0(1)如图1,求a,b的值;(2)如图2,点C在线段AB上(不与A、B重合)移动,ABBD,且COD45,猜想线段AC、BD、CD之间的数量关系并证明你的结论;(3)如图3,若P为x轴正半轴上异于原点O和点A的一个动点,连接PB,将线段PB绕点P顺时针旋转90至PE,直线AE交y轴于点Q,当P点在x轴上移动时,线段BE和线段BQ中哪一条线段长为定值,并求出该定值3、小明在一次数学活动中,进行了如下的探究活动:如图,在矩形ABCD中,AB=8,AD=6,以点B为中心,顺时针旋转矩形ABCD,得到矩形BEFG,点A、D、C的对应点分别为E、F、G(1)如图1,当点E落在CD边上时,求DE的

7、长;(2)如图2,当点E落在线段DF上时,BE与CD交于点H求证:ABDEBD;求DH的长(3)如图3,若矩形ABCD对角线ACBD相交于点P,连接PE、PF,记PEF面积为S,请直接写出S的最值4、如图,在平面直角坐标系中,点A的坐标(2,0),点C是y轴上的动点,当点C在y轴上移动时,始终保持是等边三角形(点A、C、P按逆时针方向排列);当点C移动到O点时,得到等边三角形AOB(此时点P与点B重合)初步探究(1)点B的坐标为 ;(2)点C在y轴上移动过程中,当等边三角形ACP的顶点P在第二象限时,连接BP,求证:;深入探究(3)当点C在y轴上移动时,点P也随之运动,探究点P在怎样的图形上运

8、动,请直接写出结论,并求出这个图形所对应的函数表达式;拓展应用(4)点C在y轴上移动过程中,当OP=OB时,点C的坐标为 5、如图1,二次函数ya(x+3)(x4)的图象交坐标轴于点A,B(0,2),点P为x轴上一动点(1)求该二次函数的解析式;(2)过点P作PQx轴,分别交线段AB、抛物线于点Q,C,连接AC若OP1,求ACQ的面积;(3)如图2,连接PB,将线段PB绕点P逆时针旋转90得到线段PD当点D在抛物线上时,求点D的坐标-参考答案-一、单选题1、B【解析】【分析】根据A(x,y)在第二象限内可以判断x,y的符号,再根据|x|=2,|y|=3就可以确定点A的坐标,进而确定点A关于原点

9、的对称点的坐标【详解】A(x,y)在第二象限内,x0 y0,又|x|=2,|y|=3,x=-2, y=3,点A关于原点的对称点的坐标是(2,-3)故选:B【考点】本题考查了关于原点对称的点的坐标,由点所在的象限能判断出坐标的符号,同时考查了关于原点对称的点坐标之间的关系,难度一般2、D【解析】【分析】连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4由于2019=3366+3,因此点向右平移(即)即可到达点,根据点的坐标就可求出点的坐标【详解】连接AC,如图所示四边形OABC是菱形,OA=AB=BC=OCABC=60,ABC是等边三

10、角形AC=ABAC=OAOA=1,AC=1由图可知:每翻转6次,图形向右平移42019=3366+3,点B3向右平移1344(即3364)到点B2019B3的坐标为(2,0),B2019的坐标为(1346,0),故选:D【考点】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力发现“每翻转6次,图形向右平移4”是解决本题的关键3、C【解析】【详解】解:选项A,B中的图形是轴对称图形,不是中心对称图形,故A,B不符合题意;选项C中的图形既是轴对称图形,也是中心对称图形,故C符合题意;选项D中的图形不是轴对称图形,是中心对称图形,故D不符合题意,故选C【考点】本题

11、考查的是轴对称图形与中心对称图形的识别,把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形,掌握“轴对称图形与中心对称图形的定义”是解本题的关键.4、A【解析】【分析】连接CP,AQ,以A为圆心,以AQ为半径画圆,延长BA交于E根据正方形的性质,旋转的性质,角的和差关系,全等三角形的判定定理和性质求出AQ的长度,根据三角形三边关系确定当点Q与点E重合时,BQ取得最大值,最后根据线段的和差关系计算即可【详解】解:如下图所示,连接CP,AQ,以A为圆心,以AQ为半径画圆,延长BA交于E正方形ABCD的边长为4

12、,的半径为2,AD=CD=AB=4,ADC=90,CP=2点P绕点D按逆时针方向旋转90得到点Q,QDP=90,QD=PDADC=QDPADC-QDC=QDP-QDC,即ADQ=CDPAQ=CP=2AE=AQ=2P是上任意一点,点Q在上移动当点Q与点E重合时,BQ取得最大值为BEBE=AE+AB=6故选:A【考点】本题考查正方形的性质,旋转的性质,角的和差关系,全等三角形的判定定理和性质,三角形三边关系,线段的和差关系,综合应用这些知识点是解题关键5、D【解析】【分析】根据旋转的性质可得CDCE和DCE90,结合ACB90,ACBC,可证ACDBCE,依据全等三角形的性质即可得到CBEA45,

13、再由ADBF可得等腰BEF,则可计算出BEF的度数【详解】解:由旋转性质可得: CDCE,DCE90ACB90,ACBC,A45ACBDCBDCEDCB即ACDBCEACDBCECBEA45ADBF,BEBFBEFBFE 67.5故选:D【考点】本题考查了旋转的性质、全等三角形的判定与性质以及等腰三角形的性质,解题的关键是熟练运用旋转的性质找出相等的线段和角,并能准确判定三角形全等,从而利用全等三角形性质解决相应的问题6、B【解析】【分析】在AB上截取AQ=AO=1,利用SAS证明AQDAOE,推出QD=OE,当QDBC时,QD的值最小,即线段OE有最小值,利用勾股定理即可求解【详解】如图,在

14、AB上截取AQ=AO=1,连接DQ,将AD绕A点逆时针旋转90得到AE,BAC=DAE=90,BAC-DAC =DAE-DAC,即BAD=CAE,在AQD和AOE中,AQDAOE(SAS),QD=OE,D点在线段BC上运动,当QDBC时,QD的值最小,即线段OE有最小值,ABC是等腰直角三角形,B=45,QDBC,QBD是等腰直角三角形,AB=AC=3,AO=1,QB=2,由勾股定理得QD=QB=,线段OE有最小值为,故选:B【考点】本题考查了勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,熟记各图形的性质并准确识图是解题的关键7、D【解析】【分析】连接AC,BD,过

15、点O作于点,交于点,利用勾股定理求得的长即可解题【详解】解:如图,连接AC,BD,过点O作于点,交于点,四边形ABCD是矩形,同理可得故选:D【考点】本题考查中心对称、矩形的性质、勾股定理等知识,学会添加辅助线,构造直角三角形是解题关键8、C【解析】【分析】根据旋转的定义逐一进行判断即可得到正确的结论.【详解】解:在空气中上升的氢气球,飞驰的火车,运动员掷出标枪属于平移现象,时钟上钟摆的摆动属于旋转现象.故选:C.【考点】本题主要考查关于旋转的知识,题目比较简单,属于基础题目,大部分学生能够正确完成,熟练掌握旋转的定义是解决本题的关键.9、D【解析】【分析】根据六边形ABCDEF的内角都相等,

16、DAB=60,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可【详解】六边形ABCDEF的内角都相等,EFA=FED=FAB=ABC=120DAB=60,DAF=60,EFA+DAF=180,DAB+ABC=180,ADEFCB,故正确,FED+EDA=180,EDA=ADC=60,EDA=DAB,ABDE,故正确FAD=EDA,CDA=BAD,EFADBC,四边形EFAD,四边形BCDA是等腰梯形,AF=DE,AB=CDAB=DE,AF=CD,故正确,连接CF与AD交于点O,连接DF、AE、DB、BECDA=DAF,AFCD,AF=CD,四边形ACDF是平行四边形,故正确,同法

17、可证四边形AEDB是平行四边形,AD与CF,AD与BE互相平分,OF=OC,OE=OB,OA=OD,六边形ABCDEF是中心对称图形,且是轴对称,故正确故选D【考点】本题考查了平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型10、B【解析】【分析】根据轴对称图形和中心对称图形的定义以及性质对各项进行分析即可【详解】A、梯形不是轴对称图形,也不是中心对称图形,故本选项说法错误;B、等边三角形是轴对称图形,但不是中心对称图形,故本选项说法正确;C、平行四边形不是轴对称图形,是中心对称图形,故本选项说法错误;D、矩形是

18、轴对称图形,也是中心对称图形,故本选项说法错误故选:B【考点】本题考查了轴对称图形和中心对称图形的判断,掌握轴对称图形和中心对称图形的定义以及性质是解题的关键二、填空题1、20#20度【解析】【分析】根据题干所给角度即可直接求出的大小,即旋转角的大小【详解】解:,旋转角的度数为,故答案为:20【考点】本题考查旋转的性质根据题意找出即为旋转角是解答本题的关键2、3或8【解析】【分析】由勾股定理可求AB的长,由面积可求CH的长,由勾股定理可求AH,BH的长,分两种情况讨论,由等腰三角形的性质可求解【详解】解:如图,过点C作CHAB于H,ACB=90,cm,cm,AB=cm,SABC=ACBC=AB

19、CH,2=5CH,CH=2cm,AH=cm,BH=4cm,当点A落在直线AB上时,则AC=CK,CHAB,KH=AH=1cm,BK=5-2=3cm,当点B落在直线AB上时,则CB=CK,CHAB,KH=BH=4cm,BK=8cm,综上所述:BK=3cm或8cm,故答案为:3或8【考点】本题考查了旋转的性质,等腰三角形的性质,勾股定理,利用分类讨论思想解决问题是解题的关键3、#【解析】【分析】当EPAC时,EF有最小值,过点P作PMEF于点M,由直角三角形的性质求出PE的长,由旋转的性质得出PE=PF,EPF=120,求出PM的长,则可得出答案【详解】解:如图,当EPAC时,EF有最小值,过点P

20、作PMEF于点M,四边形ABCD是正方形,ACB=45,E为BC的中点,BC=1,CE=,PE=CE=,将PE绕点P逆时针旋转120得到PF,PE=PF,EPF=120,PEF=30,PM=PE=由勾股定理得EM=,EF=2EM=,EF的最小值是故答案为:【考点】本题考查了旋转的性质,正方形的性质,直角三角形的性质,垂线段的性质,熟练掌握旋转的性质是解题的关键4、 1 【解析】【分析】根据旋转的性质,旋转前、后的两个图形全等,旋转角相等,可得出答案【详解】BAC+C=60ABC=180-60=120ABC绕点O旋转得到ABCABCABCAC=AC,ABC=ABCAC=1,ABC=120AC=1

21、,ABC=120ABC绕点O旋转得到ABC,AOA=50,AOA=BOB=50AOB=30AOB=50-30=20 故答案为:1 ,20,120【考点】本题考察了旋转的性质做题的关键是明白旋转前、后的两个图形全等,找到对应边和对应角;旋转角相等,找到旋转角即可5、【解析】【分析】由旋转的性质可得BF=DE=2,D=ABF=90,在直角EFC中,由勾股定理可求解【详解】解:把ADE顺时针旋转90得ABF,BF=DE=2,D=ABF=90,ABC+ABF=180,点F,点B,点C共线,在直角EFC中,EC=6-2=4,CF=BC+BF=8根据勾股定理得:EF=,故答案为:【考点】本题考查了旋转的性

22、质,正方形的性质,勾股定理,灵活运用这些性质解决问题是本题的关键三、解答题1、(1)见解析;(2)见解析;(3).【解析】【分析】(1)根据网格结构找出点、的位置,然后顺次连接即可;(2)根据网格结构找出点的位置,然后连接即可;(3)利用正方形的面积减去三个三角形的面积,列式计算即可得解【详解】(1)线段如图所示;(2)线段如图所示;(3)【考点】本题考查了平移变换和旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键2、 (1)2(2)CD=BD+AC理由见解析(3)BQ是定值,【解析】【分析】(1)根据非负数的性质得到a-2=0,4b-8=0,求得a=2,b=2,得到OA=2,O

23、B=2,于是得到结果; (2)证明:将AOC绕点O逆时针旋转90得到OBF根据已知条件得到DBF=180,由DOC=45,AOB=90,同时代的BOD+AOC=45,求出FOD=BOF+BOD=BOD+AOC=45,推出ODFODC,根据全等三角形的性质得到DC=DF=DB+BF=DB+DC; (3)BQ是定值,作EFOA于F,在FE上截取PF=FD,由BAO=PDF=45,得到PAB=PDE=135,根据余角的性质得到BPA=PED,推出PBAEPD,根据全等三角形的性质得到AP=ED,于是得到FD+ED=PF+AP即:FE=FA,根据等腰直角三角形的性质得到结论(1)解:(a2)2+|4b

24、8|0,a-2=0,4b-8=0, a=2,b=2, A(2,0)、B(0,2), OA=2,OB=2, AOB的面积=;(2)证明:如图2,将AOC绕点O逆时针旋转90得到OBF,而 OAC=OBF=OBA=45,DBA=90, DBF=180, DOC=45,AOB=90, BOD+AOC=45, FOD=BOF+BOD=BOD+AOC=45, 在ODF与ODC中, :ODFODC,DC=DF,DF=BD+BF,CD=BD+AC(3)BQ是定值,BE明显不是定值,理由如下:作EFOA于F,在FE上截取FD=PF, BAO=PDF=45, PAB=PDE=135, BPA+EPF=90,EP

25、F+PED=90, BPA=PED,在PBA与EPD中, PBAEPD(AAS), AP=ED, FD+ED=PF+AP, 即:FE=FA, FEA=FAE=45, QAO=EAF=OQA=45, OA=OQ=2, BQ=4为定值【考点】本题考查了全等三角形的判定和性质,坐标与图形的性质,等腰直角三角形的判定与性质,旋转的性质,三角形面积的计算,非负数的性质,正确的作出辅助线是解题的关键3、 (1)DE的长为8-2;(2)见解析;DH=;(3)9S39【解析】【分析】(1)由旋转性质知BA=BE=8,由矩形性质知BC=AD=6,再在RtBCE中根据勾股定理可得;(2)利用旋转的性质可得:A=B

26、EF=90,AB=BE,由“HL”可证ADBEDB;由全等三角形的性质和平行线的性质可得BDC=EBD,可得BH=DH,由勾股定理可求DH的值;(3)由勾股定理可求BD的值,可得BP=5,当点E在线段BD上时,PEF面积有最小值,当点E在线段DB延长线上时,PEF面积有最大值(1)解:由旋转的性质知BA=BE=8,四边形ABCD是矩形,AD=BC=6,C=90,CE=2;DE=CD-CE=8-2;(2)证明:由旋转知:A=BEF=90,AB=BE,BEF=90,BED=90,又BD=BD,RtABDRtEBD(HL);解:设DH=x,由知ABDEBD,ABD=EBD,又在矩形ABCD中,有 A

27、BCD,BDC=ABD,BDC=EBD,BH=DH,在RtBCH中,由勾股定理得:(8-x)2+62=x2,x=,即DH=;(3)解:四边形ABCD是矩形,AB=8,AD=BC=6,BP=DP=AP=CP,BD=10,BP=5,EF=AD=6,如图,EF始终在以B为圆心,BE为半径的圆上,PEF的底EF是定值为6,当高最小或最大时,PEF的面积就存在最小值或最大值,当点E在线段BD上时,此时PE最短,则PEF面积有最小值;当点E在DB延长线上时,此时PE最长,则PEF面积有最大值;分情况讨论:当点E在线段BD上时,PEF面积有最小值,SPEF=6(8-5)=9;当点E在线段DB延长线上时,PE

28、F面积有最大值SPEF=6(8+5)=399S39【考点】本题是四边形的综合题,主要考查矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题4、(1);(2)证明见解析;(3)点P在过点B且与AB垂直的直线上,;(4)【解析】【分析】(1)作BDx轴,与x轴交于D,利用等边三角形的性质和勾股定理即可解得;(2)根据等边三角形的性质可得两组对应边相等,再结合角的和差可得BAP=OAC,再利用SAS可证得全等;(3)由(2)可知PBAB,由此可得P的运动轨迹,再求得AB的解析式,根据垂直的两条直线的一次项系数互为

29、负倒数设BP的解析式,将B点坐标代入即可求得解析式;(4)利用两点之间距离公式求得P点坐标,再利用勾股定理求得BP,结合(2)可知OC=BP,由此可得C点坐标【详解】解:(1)A(0,2),OA=2,过点B作BDx轴,OAB为等边三角形,OA=2,OB=OA=2,OD=1,即,故答案为:;(2)证明:OAB和ACP为等边三角形,AC=AP,AB=OA,CAP=OAB=60,BAP=OAC,(SAS);(3)如上图,ABP=AOC=90,点P在过点B且与AB垂直的直线上设直线AB的解析式为:,则,解得:,设直线BP的解析式为:,则,解得,故;(4)设 ,OP=OB,解得:,(舍去),故此时,点A

30、、C、P按逆时针方向排列,故答案为:【考点】本题考查求一次函数解析式,勾股定理,全等三角形的性质和判定,等边三角形的性质解题的关键是正确寻找全等三角形解决问题5、(1);(2);(3)或【解析】【分析】(1)将代入,即可求解;(2)先求直线的解析式为,则,可求;(3)设,过点作轴垂线交于点,可证明,则,将点代入抛物线解析式得,求得或【详解】解:(1)将代入,;(2)令,则,或,设直线的解析式为,轴,;(3)设,如图2,过点作轴垂线交于点,解得或,或【考点】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法求抛物线解析式,三角形面积,全等三角形判定和性质,旋转的性质等,解题的关键是熟练掌握二次函数的图象及性质,分类讨论,数形结合

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3