ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:460.50KB ,
资源ID:173460      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-173460-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018年高考数学(浙江专用)总复习课时作业:第八章 立体几何与空间向量 第2讲 空间几何体的表面积与体积 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018年高考数学(浙江专用)总复习课时作业:第八章 立体几何与空间向量 第2讲 空间几何体的表面积与体积 WORD版含答案.doc

1、基础巩固题组(建议用时:40分钟)一、选择题1.(2015全国卷)九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛 B.22斛C.36斛 D.66斛解析设米堆的底面半径为r尺,则r8,所以r.所以米堆的体积为Vr255(立方尺).故堆放的米约有1.6222(斛).答案B2.某几何体的三视图如图所示,且该几何体的

2、体积是3,则正视图中的x的值是()A.2 B. C. D.3解析由三视图知,该几何体是四棱锥,底面是直角梯形,且S底(12)23.Vx33,解得x3.答案D3.(2017宁波十校联考)一个四面体的三视图如图所示,则该四面体的表面积是()A.1 B.2 C.12 D.2解析四面体的直观图如图所示.侧面SAC底面ABC,且SAC与ABC均为腰长是的等腰直角三角形,SASCABBC,AC2.设AC的中点为O,连接SO,BO,则SOAC,又SO平面SAC,平面SAC平面ABCAC,SO平面ABC,又BO平面ABC,SOBO.又OSOB1,SB,故SAB与SBC均是边长为的正三角形,故该四面体的表面积为

3、22()22.答案B4.(2015全国卷)已知A,B是球O的球面上两点,AOB90,C为该球面上的动点.若三棱锥OABC体积的最大值为36,则球O的表面积为()A.36 B.64 C.144 D.256解析因为AOB的面积为定值,所以当OC垂直于平面AOB时,三棱锥OABC的体积取得最大值.由R2R36,得R6.从而球O的表面积S4R2144.答案C5.(2017青岛模拟)如图,四棱锥PABCD的底面ABCD为平行四边形,NB2PN,则三棱锥NPAC与三棱锥DPAC的体积比为()A.12 B.18C.16 D.13解析设点P,N在平面ABCD内的投影分别为点P,N,则PP平面ABCD,NN平面

4、ABCD,所以PPNN,则在BPP中,由BN2PN得.V三棱锥NPACV三棱锥PABCV三棱锥NABCSABCPPSABCNNSABC(PPNN)SABCPPSABCPP,V三棱锥DPACV三棱锥PACDSACDPP,又四边形ABCD是平行四边形,SABCSACD,.故选D.答案D二、填空题6.(2016浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是_cm2,体积是_cm3.解析由三视图可知该几何体由一个正方体和一个长方体组合而成,上面正方体的边长为2 cm,下面长方体是底面边长为4 cm,高为2 cm,其直观图如右图:其表面积S62224242422280(cm2).体

5、积V22244240(cm3).答案80407.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为_.解析依题意可知正四棱柱体对角线的长度等于球的直径,可设球半径为R,则2R2,解得R1,所以VR3.答案8.(2017湖州质检)某几何体的三视图如图所示,则该几何体的体积为_;表面积为_.解析由三视图可知,该几何体是一个底面半径为1,高为2的圆柱和底面半径为1,高为1的半圆锥拼成的组合体.体积V122121;半圆锥母线l,S表12212121211.答案1三、解答题9.已知一个几何体的三视图如图所示. (1)求此几何体的表面积;(2)如果点P,Q在正视图中所示位置,P为

6、所在线段中点,Q为顶点,求在几何体表面上,从P点到Q点的最短路径的长.解(1)由三视图知该几何体是由一个圆锥与一个圆柱组成的组合体,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S圆锥侧(2a)(a)a2,S圆柱侧(2a)(2a)4a2,S圆柱底a2,所以S表a24a2a2(5)a2.(2)沿P点与Q点所在母线剪开圆柱侧面,如图.则PQa,所以从P点到Q点在侧面上的最短路径的长为a.10.(2015全国卷)如图,长方体ABCDA1B1C1D1中,AB16,BC10,AA18,点E,F分别在A1B1,D1C1上,A1ED1F4.过点E,F的平面与此长方体的面相交,交线围成一个正方形

7、.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面把该长方体分成的两部分体积的比值.解(1)交线围成的正方形EHGF如图所示.(2)如图,作EMAB,垂足为M,则AMA1E4,EB112,EMAA18.因为四边形EHGF为正方形,所以EHEFBC10.于是MH6,AH10,HB6.故S四边形A1EHA(410)856,S四边形EB1BH(126)872.因为长方体被平面分成两个高为10的直棱柱,所以其体积的比值为.能力提升题组(建议用时:25分钟)11.若某一几何体的正视图与侧视图均为边长是1的正方形,且其体积为,则该几何体的俯视图可以是()解析若俯视图为A,则该几何体为正方体,

8、其体积为1,不满足条件.若俯视图为B,则该几何体为圆柱,其体积为1,不满足条件.若俯视图为C,则该几何体为三棱柱,其体积为111,满足条件.若俯视图为D,则该几何体为圆柱的,体积为1,不满足条件.答案C12.(2017丽水调研)在三棱锥PABC中,PA平面ABC,ACBC,D为侧棱PC上的一点,它的正视图和侧视图如图所示,则下列命题正确的是()A.AD平面PBC且三棱锥DABC的体积为B.BD平面PAC且三棱锥DABC的体积为C.AD平面PBC且三棱锥DABC的体积为D.BD平面PAC且三棱锥DABC的体积为解析因为PA平面ABC,所以PABC,又ACBC,PAACA,所以BC平面PAC,所以

9、BCAD,又由三视图可得,在PAC中,PAAC4,D为PC的中点,所以ADPC,又PCBCC,故AD平面PBC.又由三视图可知BC4,ADC90,BC平面PAC,故VDABCVBADC224.答案C13.(2017嘉兴调研)一个空间几何体的三视图(单位:cm)如图所示,则侧视图的面积为_cm2,该几何体的体积为_cm3.解析根据几何体的三视图,得:该几何体的左边是半圆锥,右边是直三棱锥的组合体,如图所示;且该几何体侧视图是底边长为2,高为1的等腰三角形,面积为211 cm2,该几何体的体积为V半圆锥V三棱锥121211 cm3.答案114.四面体ABCD及其三视图如图所示,平行于棱AD,BC的

10、平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(1)求四面体ABCD的体积;(2)证明:四边形EFGH是矩形.(1)解由该四面体的三视图可知,BDDC,BDAD,ADDC,BDDC2,AD1,又BDDCD,AD平面BDC,四面体ABCD的体积V221.(2)证明BC平面EFGH,平面EFGH平面BDCFG,平面EFGH平面ABCEH,BCFG,BCEH,FGEH.同理,EFAD,HGAD,EFHG,四边形EFGH是平行四边形.又AD平面BDC,BC平面BDC,ADBC,EFFG,四边形EFGH是矩形.15.如图所示,A1A是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于

11、A,B的任意一点,AA1AB2.(1)求证:BC平面A1AC;(2)求三棱锥A1ABC的体积的最大值.(1)证明因为C是底面圆周上异于A,B的一点,且AB为底面圆的直径,所以BCAC.因为AA1平面ABC,BC平面ABC,所以AA1BC.因为AA1ACA,AA1平面A1AC,AC平面A1AC,所以BC平面A1AC.(2)解法一设ACx,在RtABC中,BC(0x2),故VA1ABCSABCAA1ACBCAA1x(0x2),即VA1ABCx.因为0x2,所以0x24.所以当x22,即x时,三棱锥A1ABC的体积取得最大值为.法二在RtABC中,AC2BC2AB24,VA1ABCSABCAA1ACBCAA1ACBC.当且仅当ACBC时等号成立,此时ACBC.所以三棱锥A1ABC的体积的最大值为.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3