1、第四节数列通项的求法课时作业题号12345答案一、选择题1已知数列an的前n项和为Snan1(a为不为零的实数),则此数列()A一定是等差数列B一定是等比数列C或是等差数列或是等比数列D既不可能是等差数列,也不可能是等比数列2已知a11,ann(an1an),则数列的通项公式an()A2n1B.n1Cn2 Dn3(2009年巴蜀联考)如果数列an满足a1,是首项为1,公比为2的等比数列,则a100()A2100 B299C25050 D249504(2009年长沙月考)数列an满足a12,an1,则a2009()A2 BC D15(2009年抚州一中模拟)已知数列an满足an1anan1(n2
2、),a1a,a2b,记Sna1a2a3an,则下列结论正确的是()Aa2008a,S20082baBa2008b,S20082baCa2008b,S2008baDa2008a,S2008ba二、填空题6已知数列an满足a11,an1,则an_.7已知数列an满足a11,an12an2n,则an_.8(2009年朝阳一模)设函数f(x)a1a2xa3x2anxn1,f(0),数列an满足f(1)n2an(nN*),则数列an的通项an_.三、解答题9设曲线yx2x1ln x在x1处的切线为l,数列an中,a11,且点(an,an1)在切线l上(1)求证:数列1an是等比数列,并求an;(2)求数
3、列an的前n项和Sn.10(2009年陕西)已知数列an满足,a11,a22,an2,nN.(1)令bnan1an,证明:bn是等比数列:(2)求an的通项公式参考答案1解析:n1时,a1S1a1;n2时,anSnSn1(an1)(an11)an1(a1)当a1时,an0,数列an的通项公式an0,是等差数列,但不是等比数列;当a1时,a0,数列an的通项公式an(a1)an1,是等比数列,但不是等差数列,选C.答案:C2解析:由ann(an1an)(n1)annan1,(n2)相乘得:n,又a11,ann.选D.答案:D3解析:由题设知:a11,2n1(n2),21,22,2n1,相乘得:2
4、122232n12,an2,a10024950.答案:D4解析:由a12,an1a2a3,a42,a5,a6,故数列an具有周期性,a3n22,a3n1,a3n.200936692,a2009a2.答案:B5解析:由an1anan1(n2)a3a2a1ba,a4a3a2baba,a5a4a3a(ba)b,a6a5a4b(a)aba7a6a5ab(b)a.故数列具有周期性,a6n1a1,a6n2a2,a6n3ba,a6n4a,a6n5b,a6nab.且a1a2a3a4a5a60.200863344.a2008a4a,S2008a1a2a3a42ba.故选A.答案:A6解析:由an13,又a11,
5、13(n1)3n2,an.答案:7解析:由an12an2n,又a11(n1),ann2n1.答案:n2n18解析:a1f(0),a1a2anf(1)n2an当n2时,a1a2an1(n1)2an1两式相减得:ann2an(n1)2an1.,相乘得:,又a1,an.答案:9解析:(1)由yx2x1ln x,知x1时,y3.又y|x12x1|x12,切线l的方程为y32(x1),即y2x1.点(an,an1)在切线l上,an12an1,1an12(1an)又a11,数列1an是首项为2,公比为2的等比数列,1an22n1,即an2n1(nN*)(2)Sna1a2an(211)(221)(2n1)2222nn2n12n.10解析:(1)证明:b1a2a11,当n2时,bnan1anan(anan1)bn1,所以bn是以1为首项;为公比的等比数列(2)由(1)知bnan1ann1,当n2时,ana1(a2a1)(a3a2)(anan1)11n211n1,当n1时,n11a1,所以ann1.