收藏 分享(赏)

2020届高考数学(文)总复习大题专题练:专题四 平面向量 WORD版含答案.doc

上传人:高**** 文档编号:165531 上传时间:2024-05-25 格式:DOC 页数:8 大小:382.50KB
下载 相关 举报
2020届高考数学(文)总复习大题专题练:专题四 平面向量 WORD版含答案.doc_第1页
第1页 / 共8页
2020届高考数学(文)总复习大题专题练:专题四 平面向量 WORD版含答案.doc_第2页
第2页 / 共8页
2020届高考数学(文)总复习大题专题练:专题四 平面向量 WORD版含答案.doc_第3页
第3页 / 共8页
2020届高考数学(文)总复习大题专题练:专题四 平面向量 WORD版含答案.doc_第4页
第4页 / 共8页
2020届高考数学(文)总复习大题专题练:专题四 平面向量 WORD版含答案.doc_第5页
第5页 / 共8页
2020届高考数学(文)总复习大题专题练:专题四 平面向量 WORD版含答案.doc_第6页
第6页 / 共8页
2020届高考数学(文)总复习大题专题练:专题四 平面向量 WORD版含答案.doc_第7页
第7页 / 共8页
2020届高考数学(文)总复习大题专题练:专题四 平面向量 WORD版含答案.doc_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

1、专题四 平面向量1、已知向量,且,(1)求向量与的夹角;(2)求的值. 2、设两个非零向量a与b不共线.(1)若,求证:三点共线.(2)试确定实数k,使和反向共线.3、已知向量向量(1)当k为可值时,与垂直;(2)求向量在向量上的投影.4、平面内给定三个向量.(1)求满足的实数m,n.(2)若,求实数k.5、已知O为原点,为正数,点P在线段上,且,则的最大值是多少?6、已知O为坐标原点,且a为常数,若.(1)求函数的最小正周期和单调递减区间;(2)若时,函数的最小值为2,求实数a的值.7、设分别是梯形的对角线与的中点.(1)试用向量证明:;(2)若,求的值.8、如图所示,在中,分别是的中点,.

2、(1)用分别表示向量;(2)求证:三点共线. 答案以及解析1答案及解析:答案:(1)由得,又,向量与的夹角为.(2). 2答案及解析:答案:(1)证明:,.、共线,又它们有公共点,、三点共线.(2)与反向共线,存在实数,使,即,是不共线的两个非零向量,. 3答案及解析:答案:(1),因为,所以,所以.(2),在上的投影. 4答案及解析:答案:(1),解之得 .(2),又, . 5答案及解析:答案:设,则,由,可得,解得,所以.又,所以.因为,可得.又,所以当时,有最大值. 6答案及解析:答案:(1)由题意,且为常数, , 的最小正周期为令,得,所以单调递减区间为.(2)当时, 当,即时,所以. 7答案及解析:答案:(1)设,因为,所以.又四点不共线,所以.(2)因为,所以.又,所以,所以. 8答案及解析:答案:(1)因为,所以.因为,所以.(2)由(1)知,.所以.所以与共线.又有公共点B,所以三点共线.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3