收藏 分享(赏)

2018年高三物理总复习顶层设计文档:第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用 WORD版含答案.doc

上传人:高**** 文档编号:159409 上传时间:2024-05-25 格式:DOC 页数:17 大小:272KB
下载 相关 举报
2018年高三物理总复习顶层设计文档:第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用 WORD版含答案.doc_第1页
第1页 / 共17页
2018年高三物理总复习顶层设计文档:第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用 WORD版含答案.doc_第2页
第2页 / 共17页
2018年高三物理总复习顶层设计文档:第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用 WORD版含答案.doc_第3页
第3页 / 共17页
2018年高三物理总复习顶层设计文档:第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用 WORD版含答案.doc_第4页
第4页 / 共17页
2018年高三物理总复习顶层设计文档:第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用 WORD版含答案.doc_第5页
第5页 / 共17页
2018年高三物理总复习顶层设计文档:第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用 WORD版含答案.doc_第6页
第6页 / 共17页
2018年高三物理总复习顶层设计文档:第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用 WORD版含答案.doc_第7页
第7页 / 共17页
2018年高三物理总复习顶层设计文档:第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用 WORD版含答案.doc_第8页
第8页 / 共17页
2018年高三物理总复习顶层设计文档:第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用 WORD版含答案.doc_第9页
第9页 / 共17页
2018年高三物理总复习顶层设计文档:第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用 WORD版含答案.doc_第10页
第10页 / 共17页
2018年高三物理总复习顶层设计文档:第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用 WORD版含答案.doc_第11页
第11页 / 共17页
2018年高三物理总复习顶层设计文档:第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用 WORD版含答案.doc_第12页
第12页 / 共17页
2018年高三物理总复习顶层设计文档:第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用 WORD版含答案.doc_第13页
第13页 / 共17页
2018年高三物理总复习顶层设计文档:第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用 WORD版含答案.doc_第14页
第14页 / 共17页
2018年高三物理总复习顶层设计文档:第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用 WORD版含答案.doc_第15页
第15页 / 共17页
2018年高三物理总复习顶层设计文档:第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用 WORD版含答案.doc_第16页
第16页 / 共17页
2018年高三物理总复习顶层设计文档:第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用 WORD版含答案.doc_第17页
第17页 / 共17页
亲,该文档总共17页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第2讲动量守恒定律及应用知|识|梳|理微知识 动量守恒定律(1)内容:如果系统不受外力,或者所受外力的合力为零,这个系统的总动量保持不变。(2)常用的四种表达形式pp:即系统相互作用前的总动量p和相互作用后的总动量p大小相等,方向相同。ppp0:即系统总动量的增量为零。p1p2:即相互作用的系统内的两部分物体,其中一部分动量的增加量等于另一部分动量的减少量。m1v1m2v2m1v1m2v2,即相互作用前后系统内各物体的动量都在同一直线上时,作用前总动量与作用后总动量相等。(3)常见的几种守恒形式及成立条件理想守恒:系统不受外力或所受外力的合力为零。近似守恒:系统所受外力虽不为零,但内力远大于外

2、力。分动量守恒:系统所受外力虽不为零,但在某方向上合力为零,系统在该方向上动量守恒。微知识 碰撞(1)碰撞现象:两个或两个以上的物体在相遇的极短时间内产生非常大的相互作用的过程。(2)碰撞特征作用时间短。作用力变化快。内力远大于外力。满足动量守恒。(3)碰撞的分类及特点弹性碰撞:动量守恒,机械能守恒。非弹性碰撞:动量守恒,机械能不守恒。完全非弹性碰撞:动量守恒,机械能损失最多。微知识 爆炸现象爆炸过程中内力远大于外力,爆炸的各部分组成的系统总动量守恒。微知识 反冲运动(1)物体的不同部分在内力作用下向相反方向运动的现象。(2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理。基|础

3、|诊|断一、思维诊断1动量守恒定律中的速度是相对于同一参考系的速度()2质量相等的两个物体发生碰撞时,一定交换速度()3系统的总动量不变是指系统总动量的大小保持不变()4系统的动量守恒时,机械能也一定守恒()二、对点微练1(动量守恒条件)(多选)如图所示,在光滑水平面上有A、B两个木块,A、B之间用一轻弹簧连接,A靠在墙壁上,用力F向左推B使两木块之间的弹簧压缩并处于静止状态。若突然撤去力F,则下列说法中正确的是()A木块A离开墙壁前,A、B和弹簧组成的系统动量守恒,机械能也守恒B木块A离开墙壁前,A、B和弹簧组成的系统动量不守恒,但机械能守恒C木块A离开墙壁后,A、B和弹簧组成的系统动量守恒

4、,机械能也守恒D木块A离开墙壁后,A、B和弹簧组成的系统动量不守恒,但机械能守恒解析木块A离开墙壁前,由A、B和弹簧组成的系统受墙壁的弹力,属于外力,故系统动量不守恒,但机械能守恒,故选项A错,B对;木块A离开墙壁后,由A、B和弹簧组成的系统所受合外力为零,故系统动量守恒,又没有机械能和其他形式的能量转化,故机械能也守恒,故选项C对,D错。答案BC2(动量守恒定律)如图所示,用细线挂一质量为M的木块,有一质量为m的子弹自左向右水平射穿此木块,穿透前后子弹的速度分别为v0和v(设子弹穿过木块的时间和空气阻力不计),木块的速度大小为()A. B.C. D.解析子弹和木块水平方向动量守恒,mv0Mv

5、mv,由此知v,故B正确。答案B3(碰撞)两球A、B在光滑水平面上沿同一直线、同一方向运动,mA1 kg,mB2 kg,vA6 m/s,vB2 m/s。 当A追上B并发生碰撞后,两球A、B速度的可能值是()AvA5 m/s,vB2.5 m/sBvA2 m/s,vB4 m/sCvA4 m/s,vB7 m/sDvA7 m/s,vB1.5 m/s解析虽然题中四个选项均满足动量守恒定律,但A、D两项中,碰后A的速度vA大于B的速度vB,必然要发生第二次碰撞,不符合实际;C项中,两球碰后的总动能EkmAvA2mBvB257 J,大于碰前的总动能Ek22 J,违背了能量守恒定律;而B项既符合实际情况,也不

6、违背能量守恒定律,故B项正确。答案B4(爆炸和反冲)将静止在地面上,质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v0竖直向下喷出质量为m的炽热气体。忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是()A.v0 B.v0C.v0 D.v0解析根据动量守恒定律mv0(Mm)v,得vv0,选项D正确。答案D核心微讲1动量守恒定律适用条件(1)前提条件:存在相互作用的物体系。(2)理想条件:系统不受外力。(3)实际条件:系统所受合外力为零。(4)近似条件:系统内各物体间相互作用的内力远大于系统所受的外力。(5)方向条件:系统在某一方向上满足上面的条件,则此方

7、向上动量守恒。2动量守恒定律与机械能守恒定律的比较定律名称比较项目动量守恒定律 机械能守恒定律相同点研究对象相互作用的物体组成的系统研究过程某一运动过程不同点守恒条件系统不受外力或所受外力的矢量和为零系统只有重力或弹力做功表达式p1p2p1p2Ek1Ep1Ek2Ep2表达式的矢标性矢量式标量式某一方向上应用情况可在某一方向上独立使用不能在某一方向独立使用运算法则矢量运算代数运算3.应用动量守恒定律的解题步骤典例微探【例1】如图所示,光滑水平轨道上有三个木块A、B、C,质量分别为mA3m、mBmCm,开始时B、C均静止,A以初速度v0向右运动,A与B相撞后分开,B又与C发生碰撞并粘在一起,此后A

8、与B间的距离保持不变。求B与C碰撞前B的速度大小。解题导思:(1)A、B碰撞过程中,A、B组成的系统动量守恒吗?答:守恒。(2)题中的“此后A、B间距离保持不变”说明了什么?答:最终A、B、C三个木块的速度相同。解析设A与B碰撞后,A的速度为vA,B与C碰撞前B的速度为vB,B与C碰撞后粘在一起的速度为v,由动量守恒定律得对A、B木块:mAv0mAvAmBvB对B、C木块:mBvB(mBmC)v由最后A与B间的距离保持不变可知vAv联立式,代入数据得vBv0。答案v0题组微练11.(2017扬州模拟)如图所示,水平光滑地面上依次放置着质量均为m0.08 kg的10块完全相同的长直木板。质量M1

9、.0 kg、大小可忽略的小铜块以初速度v06.0 m/s从长木板左端滑上木板,当铜块滑离第一块木板时,速度大小为v14.0 m/s,铜块最终停在第二块木板上。g取10 m/s2,结果保留两位有效数字。求:(1)第一块木板的最终速度;(2)铜块的最终速度。解析(1)铜块在第一块木板上滑动的过程中,由动量守恒得Mv0Mv110mv2,得:v22.5 m/s。(2)铜块从滑上第一块木板到停在第二块木板上,满足动量守恒Mv0mv2(M9m)v3,得:v33.4 m/s。答案(1)2.5 m/s(2)3.4 m/s12.如图所示,光滑水平轨道上放置长木板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者

10、质量分别为mA2 kg、mB1 kg、mC2 kg。开始时C静止,A、B一起以v05 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞。求A与C发生碰撞后瞬间A的速度大小。解析因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为vA,C的速度为vC,以向右为正方向,由动量守恒定律得mAv0mAvAmCvCA与B在摩擦力作用下达到共同速度,设共同速度为vAB,由动量守恒定律得mAvAmBv0(mAmB)vABA与B达到共同速度后恰好不再与C碰撞,应满足vABvC,联立以上各式,代入数据得vA2 m/s。

11、答案2 m/s核心微讲1碰撞过程中动量守恒,即p1p2p1p2。2碰撞后系统总动能不增加,即Ek1Ek2Ek1Ek2,或。3碰撞过程中发生的情况必须符合客观实际,如果甲追上乙并发生碰撞,碰前甲的速度必须大于乙的速度,碰后甲的速度必须小于或等于乙的速度,或甲反向运动。如果碰前甲、乙是相向运动,则碰后甲、乙的运动方向不可能都不改变,除非甲、乙碰撞后速度均为零。典例微探【例2】(多选)如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动。两球质量关系为mB2mA,规定向右为正方向,A、B两球的动量均为6 kg m/s,运动中两球发生碰撞,碰撞后A球的动量增量为4 kgm/s,则()A该碰撞为

12、弹性碰撞B该碰撞为非弹性碰撞C左方是A球,碰撞后A、B两球速度大小之比为25D右方是A球,碰撞后A、B两球速度大小之比为110解题导思:(1)A、B两球,谁的速度更大些?答:A球的速度更大些。(2)如何分析碰撞是否是弹性碰撞?答:计算碰撞前的动能和碰撞后的动能的关系即可判断出结果。解析由mB2mA,pApB知碰前vBvA,若右方为A球,由于碰前动量都为6 kg m/s,即都向右运动,两球不可能相碰;若左方为A球,设碰后二者速度分别为vA、vB,由题意知pAmAvA2 kg m/s,pBmBvB10 kg m/s,解得。碰撞后A球动量变为2 kg m/s,B球动量变为10 kg m/s,又mB2

13、mA,由计算可知碰撞前后A、B两球动能之和不变,即该碰撞为弹性碰撞,选项A、C正确。答案AC题组微练21.甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p甲5 kgm/s,p乙7 kgm/s,甲追上乙并发生碰撞,碰撞后乙球的动量变为p乙10 kgm/s,则两球质量m甲与m乙的关系可能是()Am甲m乙 Bm乙2m甲Cm乙4m甲 Dm乙6m甲解析由碰撞中动量守恒可求得p甲2 kgm/s。要使甲追上乙必须有:v甲v乙,即,故m乙1.4m甲,碰后由于p甲、p乙均大于零,表示运动同向,则应有v甲v乙,即,故m乙5m甲,再由碰撞中的机械能不增加,则(应用p22mEk),代入数据得:m乙m甲,综合

14、上述讨论:m甲与m乙的质量关系应为m甲m乙5m甲。正确答案应选C。答案C22.如图,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间。A的质量为m,B、C的质量都为M,三者均处于静止状态。现使A以某一速度向右运动,求m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞。设物体间的碰撞都是弹性的。解析A向右运动与C发生第一次碰撞,碰撞过程中,系统的动量守恒、机械能守恒。设速度方向向右为正,开始时A的速度为v0,第一次碰撞后C的速度为vC1,A的速度为vA1,由动量守恒定律和机械能守恒定律得mv0mvA1MvC1mvmvMv联立式得vA1v0vC1v0如果mM,第一次碰

15、撞后,A与C速度同向,且A的速度小于C的速度,不可能与B发生碰撞;如果mM,第一次碰撞后,A停止,C以A碰前的速度向右运动,A不可能与B发生碰撞;所以只需考虑mM的情况。第一次碰撞后,A反向运动与B发生碰撞。设与B发生碰撞后,A的速度为vA2,B的速度为vB1,同样有vA2vA12v0根据题意,要求A只与B、C各发生一次碰撞,应有vA2vC1联立式得m24mMM20解得m(2)M另一个解m(2)M舍去。所以,m和M应满足的条件为(2)MmM答案(2)MmM核心微讲利用动量和能量观点解题的技巧1若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律)。2若研究对象为单一物

16、体,且涉及功和位移问题时,应优先考虑动能定理。3因为动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的始末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处。特别对于变力做功问题,就更显示出它们的优越性。典例微探【例3】在粗糙的水平桌面上有两个静止的木块A和B,两者相距为d。现给A一初速度,使A与B发生弹性正碰,碰撞时间极短。当两木块都停止运动后,相距仍然为d。已知两木块与桌面之间的动摩擦因数均为,B的质量为A的2倍,重力加速度大小为g。求A的初速度的大小。解题导思:(1)A、B碰撞的过程中满足动量守恒条件吗?答:满足,因碰撞过程时间极短,碰撞力很

17、大,能够满足内力远远大于外力的条件。(2)碰撞前后两木块做什么运动?哪些力在做功?答:均做匀减速直线运动,摩擦力做功使其动能减小。解析设在发生碰撞前的瞬间,木块A的速度大小为v;在碰撞后的瞬间,A和B的速度分别为v1和v2。在碰撞过程中,由能量和动量守恒定律,得mv2mv(2m)vmvmv1(2m)v2式中,以碰撞前木块A的速度方向为正。由式得v1设碰撞后A和B运动的距离分别为d1和d2,由动能定理得mgd1mv(2m)gd2(2m)v按题意有dd1d2设A的初速度大小为v0,由动能定理得mgdmvmv2联立式,得v0 。答案 题组微练31.(2017河南联考)如图所示,质量为m10.2 kg

18、的小物块A,沿水平面与小物块B发生正碰,小物块B的质量为m21 kg。碰撞前,A的速度大小为v03 m/s,B静止在水平地面上。由于两物块的材料未知,将可能发生不同性质的碰撞,已知A、B与地面间的动摩擦因数均为0.2,重力加速度g取10 m/s2,试求碰后B在水平面上滑行的时间。解析()假如两物块发生的是完全非弹性碰撞,碰后的共同速度为v1,则由动量守恒定律有m1v0(m1m2)v1碰后,A、B一起滑行直至停下,设滑行时间为t1,则由动量定理有(m1m2)gt1(m1m2)v1解得t10.25 s()假如两物块发生的是弹性碰撞,碰后A、B的速度分别为vA、vB,则由动量守恒定律有m1v0m1v

19、Am2vB由机械能守恒有m1vm1vm2v设碰后B滑行的时间为t2,则m2gt2m2vB解得t20.5 s可见,碰后B在水平面上滑行的时间t满足025 st0.5 s答案0.25 st0.5 s32.质量为mB2 kg的木板B静止于光滑水平面上,质量为mA 6 kg的物块A 停在B的左端,质量为mC2 kg的小球C用长为L0.8 m的轻绳悬挂在固定点O。现将小球C及轻绳拉直至水平位置后由静止释放,小球C在最低点与A发生正碰,碰撞作用时间很短为t102 s,之后小球C反弹所能上升的最大高度h0.2 m。已知A、B间的动摩擦因数0.1,物块与小球均可视为质点,不计空气阻力,取g10 m/s2。求:

20、(1)小球C与物块A碰撞过程中所受的撞击力大小;(2)为使物块A不滑离木板B,木板B至少多长?解析(1)小球C下摆过程,由动能定理:mCgLmCv小球C反弹过程,由动能定理:mCgh0mCv碰撞过程,根据动量定理:FtmC(vC)mCvC联立以上各式解得:F1.2103 N(2)小球C与物块A碰撞过程,由动量守恒定律:mCvCmC(vC)mAvA当物块A恰好滑至木板B右端并与其共速时,所求木板B的长度最小。此过程,由动量守恒定律:mAvA(mAmB)v由能量守恒定律:mAgxmAv(mAmB)v2联立以上各式解得x0.5 m答案(1)1.2103 N(2)0.5 m“人船模型”问题核心微讲 “

21、人船模型”是初态均处于静止状态的两物体发生相互作用的典型模型。(1)模型概述:在水平方向所受合外力为零的两个静止物体(一个物体在另一个物体上),在系统内力的相互作用下同时开始反向运动,这样的力学系统可看作“人船”模型。(2)模型特点:两物体速度大小、位移大小均与质量成反比,方向相反,两物体同时运动,同时停止,遵从动量守恒定律,系统或每个物体动能均发生变化:力对“人”做的功等于“人”动能的变化;力对“船”做的功等于“船”动能的变化。母题导航【母题】如图所示,长为L、质量为M的小船停在静水中,一个质量为m的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?解析当人

22、从船头走到船尾的过程中,人和船组成的系统在水平方向上不受力的作用,故系统水平方向动量守恒,设某时刻人对地的速度为v2,船对地的速度为v1,则mv2Mv10,即v2/v1M/m。在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故mv2tMv1t0,即ms2Ms10,而s1s2L所以s1L,s2L。答案s1L,s2L子题微练1如图所示,长20 m的木板AB的一端固定一竖立的木桩,木桩与木板的总质量为10 kg,将木板放在动摩擦因数为0.2的粗糙水平面上,一质量为40 kg的人从静止开始以a14 m/s2的加速度从B端向A端跑去,到达A端后在极短时间内抱住木桩(木桩的粗细不计),求:(1)人刚到

23、达A端时木板移动的距离。 (2)人抱住木桩后木板向哪个方向运动,移动的最大距离是多少?(g取10 m/s2)解析(1)由于人与木板组成的系统在水平方向上受的合力不为零,故不遵守动量守恒。设人对地的位移为s1,木板对地的位移为s2,木板移动的加速度为a2,人与木板的摩擦力为F,由牛顿定律得:FMa1160 N;a2 m/s26.0 m/s2设人从B端运动到A端所用的时间为t,则s1a1t2, s2a2t2;s1s220 m由以上各式解得t2.0 s,s212 m(2)解法一:设人运动到A端时速度为v1,木板移动的速度为v2,则v1a1t8. 0 m/s, v2a2t12.0 m/s,由于人抱住木

24、桩的时间极短,在水平方向系统动量守恒,取人的方向为正方向,则Mv1mv2(Mm)v,得v4.0 m/s。由此断定人抱住木桩后,木板将向左运动。由动能定理得(Mm)gs(Mm)v2解得s4.0 m。解法二:对木板受力分析,木板受到地面的摩擦力向左,故产生向左的冲量,因此,人抱住木桩后,系统将向左运动。由系统动量定理得(Mm)gt(Mm)v,解得v4.0 m/s由动能定理得(Mm)gs(Mm)v2解得s4.0 m.答案(1)12 m(2)4.0 m2.如图所示,质量为m、半径为R的小球,放在半径为2R,质量为2m的大空心球内。大球开始静止在光滑的水平面上,当小球从图示位置无初速度地沿大球壁滚到最低

25、点时,大球移动的距离是多少?解析设小球相对于地面移动的距离为s1,大球相对于地面移动的距离为s2。下落时间为t,则由水平方向动量守恒得m2m;s1s2R;解得s2R。答案R1(2017泰州模拟)如图所示,光滑的水平面上,小球A以速度v0向右运动时与静止的小球B发生对心正碰,碰后A球的速率为,B球的速率为,A、B两球的质量之比为()A38B35C23D43解析碰撞瞬间动量守恒,规定向右为正方向,则有mAv0mAmB,解得:或,所以A正确。答案A2一枚火箭搭载着卫星以速率v0进入太空预定位置,由控制系统使箭体与卫星分离。已知前部分的卫星质量为m1,后部分的箭体质量为m2,分离后箭体以速率v2沿火箭

26、原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v1为()Av0v2 Bv0v2Cv0v2 Dv0(v0v2)解析系统分离前后,动量守恒:(m1m2)v0m1v1m2v2,解得:v1v0(v0v2),故A、B、C错误,D正确。答案D3如图所示,两质量分别为m1和m2的弹性小球叠放在一起,从高度为h处自由落下,h远大于两小球半径,所有的碰撞都是完全弹性碰撞,且都发生在竖直方向。已知m23m1,则小球m1反弹后能达到的高度为()Ah B2h C3h D4h 解析下降过程为自由落体运动,触地时两球速度相同,v,m2碰撞地之后,速度瞬间反向,大小相等,选m1与m2碰撞过程为研究过程,碰撞前后动量守恒,设碰后m1、m2速度大小分别为v1、v2,选向上方向为正方向,则m2vm1vm1v1m2v2由能量守恒定律得(m1m2)v2m1vm2v,且m23m1联立解得:v12反弹后高度H4h,D正确。答案D4A、B两物体发生正碰,碰撞前后物体A、B都在同一直线上运动,其位移时间图象如图所示。由图可知,物体A、B的质量之比为 ()A11 B12 C13 D31解析由图象知:碰前vA4 m/s,vB0。碰后vAvB1 m/s,由动量守恒可知mAvA0mAvAmBvB,解得mB3mA。故选项C正确。答案C

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3