1、第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集为,集合,则( )A. B. C. D. 2.如果等差数列中,那么( )A. 14 B. 21 C. 28 D. 353.设,则()ABCD4.的三个内角所对的边分别为,( )A. B C D5.关于的方程的解的个数为( )A. 1 B. 2 C. 3 D. 46.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为( )A. B. C. 0 D.7.过点作圆的两条切线,切点分别为,则直线的方程为()ABCD8.设函数,则下列结论错误的是(
2、 )A. D(x)的值域为0,1 B. D(x)是偶函数C. D(x)不是周期函数 D. D(x)不是单调函数9.双曲线的左焦点为F,点P为左支下半支上任意一点(异于顶点),则直线PF的斜率的变化范围是 ( ) A. (,0) B.(1,+) C.(,0)(1,+) D.(,1)(1,+)10.已知两点,点P为坐标平面内一动点,且,则动点到点的距离的最小值为( )A.2 B.3 C. 4 D. 611.若实数满足,则的最大值为( )A. B. C. D.12.的三个内角所对的边分别为,给出下列三个叙述:以上三个叙述中能作为“是等边三角形”的充分必要条件的个数为( )A. 0个 B. 1个 C.
3、 2个 D. 3个第卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知是夹角为的两个单位向量, 若,则k的值为 .14.抛物线在处的切线与两坐标轴围成三角形区域为(包含三角形内部与边界).若点是区域内的任意一点,则的取值范围是_.15.已知是自然对数的底数,若函数的图象始终在轴的上方,则实数的取值范围 .16.在正项等比数列中,则满足的最大正整数的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)在中,内角所对的边长分别为,.求sinC和b的值.18.(本小题满分12分)已知等差数列满足,.(I)求
4、数列的通项公式;(II)求数列的前n项和.19.(本小题满分12分)在平面直角坐标系中,直线l与抛物线相交于不同的两点A,B.(I)如果直线l过抛物线的焦点,求的值;(II)如果,证明直线l必过一定点,并求出该定点坐标20.(本小题满分12分)在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。( )根据以上数据建立一个22列联表; ()试判断是否有97.5%的把握认为“休闲方式与性别有关”?下面临界值表仅供参考:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828 (参考公式:其中)21.(本小题满分12分)如图,在轴上方有一段曲线弧,其端点、在轴上(但不属于),对上任一点及点,满足:直线,分别交直线于,两点()求曲线弧的方程;()求的最小值(用表示);.22.(本小题满分12分)已知函数,. (I) 讨论函数的单调性; ()当时,恒成立,求的取值范围