推理与证明(教案)421在ABC中,判断ABC的形状并证明.22已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.应假设 23.中,已知,且,求证:为等边三角形。 推理与证明测试题答案123. B.4. A 5.6. 7.8.4 9. 10.251,3 11、食指 12.在数列1,2,2,3,3,3,4,4,4,4,中,第25项为_7_1314 15、B提示:平面面积法类比到空间体积法16 1. 提示:平面面积法类比到空间体积法1718、提示:等差数列类比到等比数列,算术平均数类比到几何平均数19 2021解: 所以三角形ABC是直角三角形22 三个方程中都没有两个相异实根 证明:假设三个方程中都没有两个相异实根,则1=4b24ac0,2=4c24ab0,3=4a24bc0.相加有a22ab+b2+b22bc+c2+c22ac+a20,(ab)2+(bc)2+(ca)20. 由题意a、b、c互不相等,式不能成立.假设不成立,即三个方程中至少有一个方程有两个相异实根.方法总结:反证法步骤假设结论不成立推出矛盾假设不成立.凡是“至少”、“唯一”或含有否定词的命题适宜用反证法.23.解: 分析:由来源:Z*xx*k.Com 由 所以为等边三角形