1、2.2.1 综合法和分析法(一)教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用综合法证明问题;了解综合法的思考过程.教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.教学过程:一、复习准备:1. 已知 “若,且,则”,试请此结论推广猜想.(答案:若,且,则)2. 已知,求证:.先完成证明 讨论:证明过程有什么特点?二、讲授新课:1. 教学例题: 出示例1:已知a, b, c是不全相等的正数,求证:a(b2 + c2) + b(c2 + a2) + c(a2 + b2) 6abc. 分析:运
2、用什么知识来解决?(基本不等式) 板演证明过程(注意等号的处理) 讨论:证明形式的特点 提出综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立. 框图表示: 要点:顺推证法;由因导果. 练习:已知a,b,c是全不相等的正实数,求证. 出示例2:在ABC中,三个内角A、B、C的对边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列. 求证:为ABC等边三角形. 分析:从哪些已知,可以得到什么结论? 如何转化三角形中边角关系? 板演证明过程 讨论:证明过程的特点. 小结:文字语言转化为符号语言;边角关系的转化;挖掘题中的隐含条件(内角和)2. 练习: 为锐角,且,求证:. (提示:算) 已知 求证:3. 小结:综合法是从已知的P出发,得到一系列的结论,直到最后的结论是Q. 运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题.三、巩固练习:1. 求证:对于任意角,. (教材P52练习 1题) (两人板演 订正 小结:运用三角公式进行三角变换、思维过程)2. 的三个内角成等差数列,求证:.3. 作业:教材P54A组 1题.