收藏 分享(赏)

2017高考数学(浙江专用)一轮复习练习:第11章 计数原理、概率 第5知能训练轻松闯关 WORD版含答案.doc

上传人:高**** 文档编号:1554004 上传时间:2024-06-08 格式:DOC 页数:7 大小:162.50KB
下载 相关 举报
2017高考数学(浙江专用)一轮复习练习:第11章 计数原理、概率 第5知能训练轻松闯关 WORD版含答案.doc_第1页
第1页 / 共7页
2017高考数学(浙江专用)一轮复习练习:第11章 计数原理、概率 第5知能训练轻松闯关 WORD版含答案.doc_第2页
第2页 / 共7页
2017高考数学(浙江专用)一轮复习练习:第11章 计数原理、概率 第5知能训练轻松闯关 WORD版含答案.doc_第3页
第3页 / 共7页
2017高考数学(浙江专用)一轮复习练习:第11章 计数原理、概率 第5知能训练轻松闯关 WORD版含答案.doc_第4页
第4页 / 共7页
2017高考数学(浙江专用)一轮复习练习:第11章 计数原理、概率 第5知能训练轻松闯关 WORD版含答案.doc_第5页
第5页 / 共7页
2017高考数学(浙江专用)一轮复习练习:第11章 计数原理、概率 第5知能训练轻松闯关 WORD版含答案.doc_第6页
第6页 / 共7页
2017高考数学(浙江专用)一轮复习练习:第11章 计数原理、概率 第5知能训练轻松闯关 WORD版含答案.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1(2016唐山统考)抛掷两枚质地均匀的骰子,向上的点数之差的绝对值为3的概率是()A.B.C. D.解析:选B.抛掷两枚质地均匀的骰子,向上的点数之差的绝对值为3的情况有:1,4;4,1;2,5;5,2;3,6;6,3,共6种情况,所以向上的点数之差的绝对值为3的概率为P,故选B.2(2016江西省师大附中检测)高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙相邻,则甲、丙相邻的概率为()A. B.C. D.解析:选B.五人排队,甲、乙相邻的排法有AA48(种),若甲、丙相邻,此时甲在乙、丙中间,排法有AA12(种),故甲、丙相邻的概率为.3从2名男生和2名女生中,任意选择两人在

2、星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生,星期日安排一名女生的概率为()A. B.C. D.解析:选A.将2名男生记为A1,A2,2名女生记为B1,B2,任意选择两人在星期六、星期日参加某公益活动有A1A2,A1B1,A1B2,A2B1,A2B2,B1B2,B1A1,B2A1,B1A2,B2A2,B2B1,A2A1共12种情况,而星期六安排一名男生,星期日安排一名女生共有A1B1,A1B2,A2B1,A2B2这4种情况,则其发生的概率为.4(2016台州高三质检)已知集合M1,2,3,4,N(a,b)|aM,bM,A是集合N中任意一点,O为坐标原点,则直线OA与yx21有交

3、点的概率是()A. B.C. D.解析:选C.易知过点(0,0)与yx21相切的直线为y2x(斜率小于0的无需考虑),集合N中共有16个元素,其中使OA斜率不小于2的有(1,2),(1,3),(1,4),(2,4),共4个,由古典概型知概率为.5(2016湖州模拟)已知函数f(x)x3ax2b2x1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为()A. B.C. D.解析:选D.f(x)x22axb2,要使函数f(x)有两个极值点,则有(2a)24b20,即a2b2.由题意知所有的基本事件有9个,即(1,0),(1,1),(1,2)

4、,(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a的取值,第二个数表示b的取值满足a2b2的有6个基本事件,即(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),所以所求事件的概率为.6(2016东北三校模拟)一个三位自然数百位,十位,个位上的数字依次为a,b,c,当且仅当ab,bc时称为“凹数”(如213,312等),若a,b,c1,2,3,4,且a,b,c互不相同,则这个三位数为“凹数”的概率是()A. B.C. D.解析:选C.由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理由1,2,

5、4组成的三位自然数共6个;由1,3,4组成的三位自然数也是6个;由2,3,4组成的三位自然数也是6个所以共有666624个当b1时,有214,213,314,412,312,413,共6个“凹数”当b2时,有324,423,共2个“凹数”所以三位数为“凹数”的概率P.7(2016余姚中学月考)如图所示的茎叶图记录了甲、乙两人在5次体能综合测评中的成绩(成绩为两位整数),现乙还有一次不少于90分的成绩未记录,则甲的平均成绩超过乙的平均成绩的概率为_解析:由题意得,基本事件总数为10,满足要求的有8个,所以所求概率为.答案:8(2014高考浙江卷)在3张奖券中有一、二等奖各1张,另1张无奖甲、乙两

6、人各抽取1张,两人都中奖的概率是_解析:记“两人都中奖”为事件A,设中一、二等奖及不中奖分别记为1,2,0,那么甲、乙抽奖结果有(1,2),(1,0),(2,1),(2,0),(0,1),(0,2),共6种其中甲、乙都中奖有(1,2),(2,1),2种,所以P(A).答案:9(2016温州高三联考)某校高三年级要从4名男生和2名女生中任选3名代表参加数学竞赛(每人被选中的机会均等),则男生甲和女生乙至少有一人被选中的概率是_解析:男生甲和女生乙至少有一人被选中的概率是1.答案:10在集合A2,3中随机取一个元素m,在集合B1,2,3中随机取一个元素n,得到点P(m,n),则点P在圆x2y29内

7、部的概率为_解析:点P(m,n)共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这两种情况满足在圆x2y29内部,所以所求概率为.答案:11设连续掷两次骰子得到的点数分别为m,n,令平面向量a(m,n),b(1,3)(1)求使得事件“ab”发生的概率;(2)求使得事件“|a|b|”发生的概率解:(1)由题意知,m1,2,3,4,5,6,n1,2,3,4,5,6,故(m,n)所有可能的取法共36种使得ab,即m3n0,即m3n,共有2种:(3,1)、(6,2),所以事件ab的概率为.(2)|a|b|,即m2n210.共有(1,1)、

8、(1,2)、(1,3)、(2,1)、(2,2)、(3,1)6种使得|a|b|,其概率为.12编号分别为A1,A2,A16的16名篮球运动员在某次训练比赛中的得分记录如下:运动员编号A1A2A3A4A5A6A7A8得分1535212825361834运动员编号A9A10A11A12A13A14A15A16得分1726253322123138(1)将得分在对应区间内的人数填入相应的空格:区间10,20)20,30)30,40人数(2)从得分在区间20,30)内的运动员中随机抽取2人,用运动员编号列出所有可能的抽取结果;求这2人得分之和大于50的概率解:(1)4,6,6.(2)得分在区间20,30)

9、内的运动员编号为A3,A4,A5,A10,A11,A13,从中随机抽取2人,所有可能的抽取结果有:A3,A4,A3,A5,A3,A10,A3,A11,A3,A13,A4,A5,A4,A10,A4,A11,A4,A13,A5,A10,A5,A11,A5,A13,A10,A11,A10,A13,A11,A13共15种“从得分在区间20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B)的所有可能结果有A4,A5,A4,A10,A4,A11,A5,A10,A10,A11共5种所以P(B).1(2016淄博一模)将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设

10、任意投掷两次使两条不重合直线l1:axby2,l2:x2y2平行的概率为P1,相交的概率为P2,若点(P1,P2)在圆(xm)2y2的内部,则实数m的取值范围是()A. B.C. D.解析:选D.对于a与b各有6种情形,故总数为36种两条直线l1:axby2,l2:x2y2平行的情形有a2,b4或a3,b6,故概率为P1,两条直线l1:axby2,l2:x2y2相交的情形除平行与重合(a1,b2)即可,所以P2,因为点(P1,P2)在圆(xm)2y2的内部,所以,解得m,故选D.2(2016浙江省湖州中学模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2bxc0有实根的概率为_

11、解析:将一枚骰子抛掷两次共有36种结果:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),属于古典概型方程x2bxc0有实根,则b24c0,即b2,其包含的结果有:(2,1),(3,1),(4,1),(5,1),(6,

12、1),(3,2),(4,2),(5,2),(6,2),(4,3),(5,3),(6,3),(4,4),(5,4),(6,4),(5,5),(6,5),(5,6),(6,6),共19种,由古典概型概率计算公式可得P.答案:3(2016青岛检测)某市甲、乙两社区联合举行“五一”文艺汇演,甲、乙两社区各有跳舞、笛子演奏、唱歌三个表演项目,其中甲社区表演队中表演跳舞的有1人,表演笛子演奏的有2人,表演唱歌的有3人(1)若从甲、乙社区各选一个表演项目,求选出的两个表演项目相同的概率;(2)若从甲社区表演队中选2人表演节目,求至少有一位表演笛子演奏的概率解:(1)记甲社区跳舞、笛子演奏、唱歌三个表演项目分

13、别为A1、B1、C1,乙社区跳舞、笛子演奏、唱歌三个表演项目分别为A2、B2、C2,则从甲、乙社区各选一个表演项目的所有基本事件有(A1,A2),(A1,B2),(A1,C2),(B1,A2),(B1,B2),(B1,C2),(C1,A2),(C1,B2),(C1,C2),共9个其中选出的两个表演项目相同这一事件包含的基本事件有(A1,A2),(B1,B2),(C1,C2),共3个,所以所求概率P1.(2)记甲社区表演队中表演跳舞的1人为a1,表演笛子演奏的2人分别为b1、b2,表演唱歌的3人分别为c1、c2、c3.则从甲社区表演队中选2人的所有基本事件有(a1,b1),(a1,b2),(a1

14、,c1),(a1,c2),(a1,c3),(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3),共15个其中至少有一位表演笛子演奏这一事件包含的基本事件有(a1,b1),(a1,b2),(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),共9个,所以所求概率P2.4已知集合Px|x(x210x24)0,Qy|y2n1,1n2,nN*,MPQ.在平面直角坐标系中,点A的坐标为(x,y),且xM,yM,试计算:(1)点A正好在第三象限

15、的概率;(2)点A不在y轴上的概率;(3)点A正好落在区域x2y210上的概率解:由集合Px|x(x210x24)0可得P6,4,0,由Qy|y2n1,1n2,nN*可得Q1,3,则MPQ6,4,0,1,3,因为点A的坐标为(x,y),且xM,yM,所以满足条件的点A的所有情况为(6,6),(6,4),(6,0),(6,1),(6,3),(3,3),共25种(1)点A正好在第三象限的可能情况为(6,6),(4,6),(6,4),(4,4),共4种,故点A正好在第三象限的概率P1.(2)点A在y轴上的可能情况为(0,6),(0,4),(0,0),(0,1),(0,3),共5种,故点A不在y轴上的概率P21.(3)点A正好落在区域x2y210上的可能情况为(0,0),(1,0),(0,1),(3,1),(1, 3),(3,0),(0, 3),(1,1),共8种,故点A落在区域x2y210上的概率P3.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3