1、学业分层测评(建议用时:45分钟)学业达标一、选择题1.对x1x20,0a1,记y1,y2,则x1x2与y1y2的关系为()A.x1x2y1y2B.x1x2y1y2C.x1x2y1y2D.不能确定,与a有关【解析】x1x20,0a1,y1y2x1x2x1x20,y1y2x1x2,选项C正确.【答案】C2.设asin 15cos 15,bsin 16cos 16,则下列各式正确的是()A.abB.abC.baD.ba【解析】asin 15cos 15sin 60,bsin 16cos 16sin 61,ab,排除C,D.又ab,absin 60sin 61sin 61sin 61b,故ab成立.
2、【答案】B3.已知数列an的通项公式an,其中a,b均为正数,那么an与an1的大小关系是()A.anan1B.anan1C.anan1D.与n的取值有关【解析】an1an.a0,b0,n0,nN,an1an0,an1an.【答案】B4.若a,b为不等的正数,则(abkakb)(ak1bk1)(kN)的符号()A.恒正B.恒负C.与k的奇偶性有关D.与a,b大小无关【解析】(abkakb)ak1bk1bk(ab)ak(ba)(ab)(bkak).a0,b0,若ab,则akbk,(ab)(bkak)0;若ab,则akbk,(ab)(bkak)0.【答案】B5.已知ab0,cd0,m,n,则m与n
3、的大小关系是()A.mnC.mnD.mn【解析】ab0,cd0,acbd0,m0,n0.又m2acbd2,n2acbd(adbc),又由adbc2,2adbc,m2n2,mn.【答案】B二、填空题6.若xy0,M(x2y2)(xy),N(x2y2)(xy),则M,N的大小关系为_.【解析】MN(x2y2)(xy)(x2y2)(xy)(xy)(x2y2)(xy)22xy(xy).xy0,xy0,xy0,2xy(xy)0,MN0,即MN.【答案】MN7.设A,B(a0,b0且ab),则A,B的大小关系是_. 【导学号:38000019】【解析】法一(比较法):AB0(a0,b0且ab),则AB.法
4、二:A,B,故AB.【答案】AB8.若f(x),且记A4loga(x1),B4loga(x1)2,若a1,则_1.【解析】因为f(x)的定义域是x3,又a1,所以A0,B0.又因为BAloga(x1)220,所以BA,即1.【答案】三、解答题9.若实数x,y,m满足|xm|ym|,则称x比y接近m.对任意两个不相等的正数a,b,证明:a2bab2比a3b3接近2ab.【证明】a0,b0,且ab,a2bab22ab,a3b32ab.a2bab22ab0,a3b32ab0.|a2bab22ab|a3b32ab|a2bab22aba3b32aba2bab2a3b3a2(ba)b2(ab)(ab)(b
5、2a2)(ab)2(ab)0,|a2bab22ab|a3b32ab|,a2bab2比a3b3接近2ab.10.已知a,b都是正数,x,yR,且ab1.求证:ax2by2(axby)2.【证明】ax2by2(axby)2ax2by2a2x22abxyb2y2(ax2a2x2)(by2b2y2)2abxyax2(1a)by2(1b)2abxyabx2aby22abxyab(xy)2.a0,b0,x,yR,ab0,(xy)20,ax2by2(axby)2成立.能力提升1.若0a1a2,0b1b2,且a1a2b1b21,则下列代数式中值最大的是()A.a1b1a2b2B.a1a2b1b2C.a1b2a
6、2b1D.【解析】A项减B项有:a1b1a2b2(a1a2b1b2)(b1a2)(a1b2).由题意得0a1,a21,0b1,b21,(b1a2)(a1b2)0,a1b1a2b2a1a2b1b2.A项减D项有:(a1b1a2b2)2a1b1a1b1b1(2a11)(2a11)(2a11)20.a1b1a2b2.又知C项:a1b2a2b1a1(1b1)a2(1b2)a1a2(a1b1a2b2)1(a1b1a2b2).A项最大,故选A.【答案】A2.设x,y,z,则x,y,z的大小关系是()A.xyzB.zxyC.yzxD.xzy【解析】y,z.0,zy.又xz0,xz,xzy.【答案】D3.设nN,n1,则logn(n1)与logn1(n2)的大小关系是_. 【导学号:38000020】【解析】logn1(n2)logn1n1.【答案】logn(n1)logn1(n2)4.若a,b,c(0,),证明:aabbcc(abc).【证明】abc.由于a,b,c在题中的地位相当(全对称性),不妨设abc0,1,0,从而1,同理1,1,相乘即可得证.1,即1,aabbcc(abc).