1、A组考点能力演练1第22届冬季奥运会于2014年2月7日在俄罗斯索契开幕,到冰壶比赛场馆服务的大学生志愿者中,有2名来自莫斯科国立大学,有4名来自圣彼得堡国立大学,现从这6名志愿者中随机抽取2人,则至少有1名志愿者来自莫斯科国立大学的概率是()A.B.C. D.解析:从6人中抽取2人的基本事件个数为15,而事件“两名志愿者都来自圣彼得堡国立大学”包含的基本事件个数为6,所求概率为P1.故选C.答案:C2(2016威海一模)从集合2,3,4,5中随机抽取一个数a,从集合1,3,5中随机抽取一个数b,则向量m(a,b)与向量n(1,1)垂直的概率为()A. B.C. D.解析:由题意可知m(a,b
2、)有:(2,1),(2,3),(2,5),(3,1),(3,3),(3,5),(4,1),(4,3),(4,5),(5,1),(5,3),(5,5),共12种情况因为mn,即mn0,所以a1b(1)0,即ab,满足条件的有(3,3),(5,5)共2个,故所求的概率为.答案:A3记a,b分别是投掷两次骰子所得的数字,则方程x2ax2b0有两个不同实根的概率为()A. B.C. D.解析:由题意知投掷两次骰子所得的数字分别为a,b,则基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36种,而
3、方程x2ax2b0有两个不同实根的条件是a28b0,因此满足此条件的基本事件有(3,1),(4,1),(5,1),(6,1),(5,2),(5,3),(6,2),(6,3),(6,4),共9个,故所求的概率为.答案:B4(2016亳州质检)已知集合M1,2,3,4,N(a,b)|aM,bM,A是集合N中任意一点,O为坐标原点,则直线OA与yx21有交点的概率是()A. B.C. D.解析:易知过点(0,0)与yx21相切的直线为y2x(斜率小于0的无需考虑),集合N中共有16个元素,其中使OA斜率不小于2的有(1,2),(1,3),(1,4),(2,4),共4个,故所求的概率为.答案:C5一个
4、三位数的百位,十位,个位上的数字依次为a,b,c,当且仅当ab,bc时称为“凹数”(如213,312等),若a,b,c1,2,3,4,且a,b,c互不相同,则这个三位数为“凹数”的概率是()A. B.C. D.解析:由1,2,3组成的三位数有123,132,213,231,312,321,共6个由1,2,4组成的三位自然数共6个;由1,3,4组成的三位自然数也是6个;由2,3,4组成的三位自然数也是6个所以共有666624个当b1时,有214,213,314,412,312,413,共6个“凹数”当b2时,有324,423,共2个“凹数”故这个三位数为“凹数”的概率P.答案:C6从2男3女共5
5、名同学中任选2名(每名同学被选中的机会均等),这2名都是男生或都是女生的概率等于_解析:设2名男生为A,B,3名女生为a,b,c,则从5名同学中任取2名的方法有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10种,而这2名同学刚好是一男一女的有(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),共6种,故所求的概率P1.答案:7设集合P2,1,0,1,2,xP且yP,则点(x,y)在圆x2y24内部的概率为_解析:以(x,y)为基本事件,可知满足xP且yP的基本事件有25个若点(x,y)在圆x2y2
6、4内部,则x,y1,1,0,用列表法或坐标法可知满足x1,1,0且y1,1,0的基本事件有9个所以点(x,y)在圆x2y24内部的概率为.答案:8将一颗骰子投掷两次分别得到点数a,b,则直线axby0与圆(x2)2y22相交的概率为_解析:圆心(2,0)到直线axby0的距离d,当d时,直线与圆相交,则有da,满足题意的ba共有15种情况,因此直线axby0与圆(x2)2y22相交的概率为.答案:9甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女(1)若从甲校和乙校报名的教师中各任选1名,求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,求选出的2名老师来自同一
7、学校的概率解:(1)从甲、乙两校报名的教师中各选1名,共有nCC9种选法记“2名教师性别相同”为事件A,则事件A包含基本事件总数mC1C14,P(A).(2)从报名的6人中任选2名,有nC15种选法记“选出的2名老师来自同一学校”为事件B,则事件B包含基本事件总数m2C6.选出2名教师来自同一学校的概率P(B).10(2016烟台一模)某校从参加高三年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及各组频数如下:40,50),2;50,60),3;60,70),14;70,80),15;80,90),12;90,100),4.(1)请把给
8、出的样本频率分布表中的空格都填上;(2)估计成绩在85分以上学生的比例;(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩90,100)中选两位同学,共同帮助成绩在40,50)中的某一位同学已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率样本频率分布表分组频数频率40,50)20.0450,60)30.0660,70)140.2870,80)150.3080,90)90,100)40.08合计解:(1)样本的频率分布表:分组频数频率40,50)20.0450,60)30.0660,70)140.2870,80)150.3080,
9、90)120.2490,100)40.08合计501.00(2)估计成绩在85分以上的有6410人,所以估计成绩在85分以上的学生比例为.(3)40,50)内有2人,记为甲、A.90,100)内有4人,记为乙,B、C、D.则“二帮一”小组有以下12种分组办法:(甲,乙,B),(甲,乙,C),(甲,乙,D),(甲,B,C),(甲,B,D),(甲,C,D),(A,乙,B),(A,乙,C),(A,乙,D),(A,B,C),(A,B,D),(A,C,D)其中甲、乙两同学被分在同一小组有3种办法:(甲,乙,B),(甲,乙,C),(甲,乙,D)所以甲、乙两同学恰好被安排在同一小组的概率为P.B组高考题型专
10、练1(2015高考广东卷)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A. B.C. D1解析:由题意得基本事件的总数为C,恰有1个白球与1个红球的基本事件个数为CC,所以所求概率P.答案:B2(2015高考江苏卷)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球从中一次随机摸出2只球,则这2只球颜色不同的概率为_解析:从4只球中一次随机摸出2只球,有6种结果,其中这2只球颜色不同有5种结果,故所求概率为.答案:3(2015高考四川卷)一辆小客车上有5个座位,其座位号为1,2,3,4,5.乘客
11、P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5,他们按照座位号从小到大的顺序先后上车乘客P1因身体原因没有坐自己的1号座位,这时司机要求余下的乘客按以下规则就座:如果自己的座位空着,就只能坐自己的座位;如果自己的座位已有乘客就座,就在这5个座位的剩余空位中任意选择座位(1)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法下表给出了其中两种坐法,请填入余下两种坐法(将乘客就座的座位号填入表中空格处);乘客P1P2P3P4P5座位号3214532451(2)若乘客P1坐到了2号座位,其他乘客按规则就座,求乘客P5坐到5号座位的概率解:(1)余下两种坐法如下表所示:乘客
12、P1P2P3P4P5座位号3241532541(2)若乘客P1坐到了2号座位,其他乘客按规则就座,则所有可能的坐法可用下表表示为:乘客P1P2P3P4P5座位号2134523145234152345123541243152435125341于是,所有可能的坐法共8种设“乘客P5坐到5号座位”为事件A,则事件A中的基本事件的个数为4,所以P(A).答:乘客P5坐到5号座位的概率是.4(2014高考福建卷)根据世行2013年新标准,人均GDP低于1 035美元为低收入国家;人均GDP为1 0354 085美元为中等偏下收入国家;人均GDP为4 08512 616美元为中等偏上收入国家;人均GDP不
13、低于12 616美元为高收入国家某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:行政区区人口占城市人口比例区人均GDP(单位:美元)A25%8 000B30%4 000C 15% 6 000D10%3 000E20%10 000(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率解:(1)设该城市人口总数为a,则该城市人均GDP为(8 0000.25a4 0000.30a6 0000.15a3 0000.10a10 0000.20a)6 400.因为6 4004 085,12 616),所以该城市人均GDP达到了中等偏上收入国家标准(2)“从5个行政区中随机抽取2个”的所有的基本事件是:A,B,A,C,A,D,A,E,B,C,B,D,B,E,C,D,C,E,D,E,共10个设事件“抽到的2个行政区人均GDP都达到中等偏上收入国家标准”为M,则事件M包含的基本事件是:A,C,A,E,C,E,共3个,所以所求概率为P(M).