1、高考资源网() 您身边的高考专家A组考点能力演练1l1,l2,l3是空间三条不同的直线,则下列命题正确的是()Al1l2,l2l3l1l3Bl1l2,l2l3l1l3Cl1l2l3l1,l2,l3共面Dl1,l2,l3共点l1,l2,l3共面解析:如图长方体ABCDA1B1C1D1中,ABAD,CDAD但有ABCD,因此A不正确;又ABDCA1B1,但三线不共面,因此C不正确;又从A出发的三条棱不共面,所以D不正确;因此B正确,且由线线平行和垂直的定义易知B正确答案:B2(2016广东佛山模拟)如图所示,正三棱柱ABCA1B1C1的各棱长(包括底面边长)都是2,E,F分别是AB,A1C1的中点
2、,则EF与侧棱C1C所成的角的余弦值是()A. B. C. D2解析:如图,取AC中点G,连FG,EG,则FGC1C,FGC1C;EGBC,EGBC,故EFG即为EF与C1C所成的角,在RtEFG中,cosEFG.答案:B3如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的一个图是()解析:在A图中分别连接PS,QR,易证PSQR,P,Q,R,S共面;在C图中分别连接PQ,RS,易证PQRS,P,Q,R,S共面;如图所示,在B图中过P,Q,R,S可作一正六边形,故四点共面;D图中PS与QR为异面直线,四点不共面,故选D.答案:D4.(2016衡水中学模拟)如图所示,在正方
3、体ABCDA1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()AMN与CC1垂直BMN与AC垂直CMN与BD平行DMN与A1B1平行解析:连接C1D,BD.N是D1C的中点,N是C1D的中点,MNBD.又CC1BD,CC1MN,故A,C正确ACBD,MNBD,MNAC,故B正确故选D.答案:D5如图所示,在四面体ABCD中,截面PQMN是正方形,且PQAC,则下列命题中,错误的是()AACBDBAC截面PQMNCACBDD异面直线PM与BD所成的角为45解析:由题意可知PQAC,QMBD,PQQM,所以ACBD,故A正确;由PQAC可得AC截面PQMN,故B正确;由PN
4、BD知,异面直线PM与BD所成的角等于PM与PN所成的角,又四边形PQMN为正方形,所以MPN45,故D正确;而ACBD没有条件说明其相等,故选C.答案:C6设a,b,c是空间中的三条直线,下面给出四个命题:若ab,bc,则ac;若ab,bc,则ac;若a与b相交,b与c相交,则a与c相交;若a平面,b平面,则a,b一定是异面直线上述命题中正确的命题是_(写出所有正确命题的序号)解析:由公理4知正确;当ab,bc时,a与c可以相交、平行或异面,故错;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故错;a,b,并不能说明a与b“不同在任何一个平面内”,故错答案:7(2016济南一
5、模)在正四棱锥VABCD中,底面正方形ABCD的边长为1,侧棱长为2,则异面直线VA与BD所成角的大小为_解析:如图,设ACBDO,连接VO,因为四棱锥VABCD是正四棱锥,所以VO平面ABCD,故BDVO.又四边形ABCD是正方形,所以BDAC,所以BD平面VAC,所以BDVA,即异面直线VA与BD所成角的大小为.答案:8.如图所示,正方体ABCDA1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:直线AM与CC1是相交直线;直线AM与BN是平行直线;直线BN与MB1是异面直线;直线MN与AC所成的角为60.其中正确的结论为_(注:把你认为正确的结论序号都填上)解析:由
6、图可知AM与CC1是异面直线,AM与BN是异面直线,BN与MB1为异面直线因为D1CMN,所以直线MN与AC所成的角就是D1C与AC所成的角,且角为60.答案:9已知正方体ABCDA1B1C1D1中,E、F分别为D1C1、C1B1的中点,ACBDP,A1C1EFQ.求证:(1)D、B、F、E四点共面;(2)若A1C交平面DBFE于R点,则P、Q、R三点共线证明:(1)如图所示,因为EF是D1B1C1的中位线,所以EFB1D1.在正方体AC1中,B1D1BD,所以EFBD.所以EF,BD确定一个平面,即D、B、F、E四点共面(2)在正方体ABCDA1B1C1D1中,设平面A1ACC1确定的平面为
7、,又设平面BDEF为.因为QA1C1,所以Q.又QEF,所以Q.则Q是与的公共点,同理,P点也是与的公共点所以PQ.又A1CR,所以RA1C,R且R.则RPQ,故P、Q、R三点共线10.如图,在三棱锥PABC中,PA底面ABC,D是PC的中点已知BAC,AB2,AC2,PA2.求:(1)三棱锥PABC的体积;(2)异面直线BC与AD所成角的余弦值解:(1)SABC222,三棱锥PABC的体积为VSABCPA22.(2)如图,取PB的中点E,连接DE,AE,则EDBC,所以ADE(或其补角)是异面直线BC与AD所成的角在ADE中,DE2,AE,AD2,cosADE.B组高考题型专练1(2014高
8、考广东卷)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1l2,l2l3,l3l4,则下列结论一定正确的是()Al1l4Bl1l4Cl1与l4既不垂直也不平行Dl1与l4的位置关系不确定解析:如图所示正方体ABCD A1B1C1D1,取l1为BB1,l2为BC,l3为AD,l4为CC1,则l1l4,可知选项A错误;取l1为BB1,l2为BC,l3为AD,l4为C1D1,则l1l4,故B错误,则C也错误,故选D.答案:D2(2015高考广东卷)若直线l1和l2是异面直线,l1在平面内,l2在平面内,l是平面与平面的交线,则下列命题正确的是()Al与l1,l2都不相交Bl与l1,l2都相
9、交Cl至多与l1,l2中的一条相交Dl至少与l1,l2中的一条相交解析:可用反证法假设l与l1,l2都不相交,因为l与l1都在平面内,于是ll1,同理ll2,于是l1l2,与已知矛盾,故l至少与l1,l2中的一条相交答案:D3(2014高考大纲卷)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A. B.C. D.解析:设正四面体ABCD的棱长为2.如图,取AD的中点F,连接EF,CF.在ABD中,由AEEB,AFFD,得EFBD,且EFBD1.故CEF为直线CE与BD所成的角或其补角在ABC中,CEAB;在ADC中,CFAD.在CEF中,cosCEF.所以直线
10、CE与BD所成角的余弦值为.答案:B4(2015高考四川卷)如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E,F分别为AB,BC的中点设异面直线EM与AF所成的角为,则cos 的最大值为_解析:取BF的中点N,连接MN,EN,则ENAF,所以直线EN与EM所成的角就是异面直线EM与AF所成的角在EMN中,当点M与点P重合时,EMAF,所以当点M逐渐趋近于点Q时,直线EN与EM的夹角越来越小,此时cos 越来越大故当点M与点Q重合时,cos 取最大值设正方形的边长为4,连接EQ,NQ,在EQN中,由余弦定理,得cosQEN,所以cos 的最大值为.答案:- 6 - 版权所有高考资源网