1、第八篇第3节 一、选择题1设P是椭圆1上的点若F1、F2是椭圆的两个焦点,则|PF1|PF2|等于()A4B5C8D10解析:由方程知a5,根据椭圆定义,|PF1|PF2|2a10.故选D.答案:D2(2014唐山二模)P为椭圆1上一点,F1,F2为该椭圆的两个焦点,若F1PF260,则等于()A3BC2D2解析:由椭圆方程知a2,b,c1,|PF1|PF2|4.|cos 6042.答案:D3(2012年高考江西卷)椭圆1(ab0)的左、右顶点分别是A、B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为()A.BC.D2解析:本题考查椭圆的性质
2、与等比数列的综合运用由椭圆的性质可知|AF1|ac,|F1F2|2c,|F1B|ac,又|AF1|,|F1F2|,|F1B|成等比数列,故(ac)(ac)(2c)2,可得e.故应选B.答案:B4(2013年高考辽宁卷)已知椭圆C:1(ab0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若|AB|10,|BF|8,cosABF,则C的离心率为()A.BC.D解析:|AF|2|AB|2|BF|22|AB|BF|cosABF10064210836,则|AF|6,AFB90,半焦距c|FO|AB|5,设椭圆右焦点F2,连结AF2,由对称性知|AF2|FB|8,2a|AF2|AF|6
3、814,即a7,则e.故选B.答案:B5已知椭圆E:1,对于任意实数k,下列直线被椭圆E截得的弦长与l:ykx1被椭圆E截得的弦长不可能相等的是()Akxyk0Bkxy10Ckxyk0Dkxy20解析:取k1时,l:yx1.选项A中直线:yx1与l关于x轴对称,截得弦长相等选项B中直线:yx1与l关于原点对称,所截弦长相等选项C中直线:yx1与l关于y轴对称,截得弦长相等排除选项A、B、C,故选D.答案:D6(2014山东省实验中学第二次诊断)已知椭圆1(ab0)的左、右焦点分别为F1(c,0),F2(c,0),若椭圆上存在点P,使,则该椭圆的离心率的取值范围为()A(0,1)BC.D(1,1
4、)解析:由题意知点P不在x轴上,在PF1F2中,由正弦定理得,所以由可得,即e,所以|PF1|e|PF2|.由椭圆定义可知|PF1|PF2|2a,所以e|PF2|PF2|2a,解得|PF2|.由于ac|PF2|ac,所以有acac,即1e1e,也就是解得1e.又0e1,1eb0)的左、右焦点分别是F1、F2,过F2作倾斜角为120的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为_解析:不妨设|F1F2|1,直线MF2的倾斜角为120,MF2F160.|MF2|2,|MF1|,2a|MF1|MF2|2,2c|F1F2|1.e2.答案:29(2014西安模拟)过点(,),且与椭圆1
5、有相同焦点的椭圆的标准方程为_解析:由题意可设椭圆方程为1(mb0)的两个焦点,P为椭圆C上的一点,且.若PF1F2的面积为9,则b_.解析:由题意得(|PF1|PF2|)22|PF1|PF2|4c2,即4a22|PF1|PF2|4c2,|PF1|PF2|2b2,SPF1F2|PF1|PF2|b29,b3.答案:3三、解答题11(2012年高考广东卷)在平面直角坐标系xOy中,已知椭圆C1:1(ab0)的左焦点为F1(1,0),且点P(0,1)在C1上(1)求椭圆C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y24x相切,求直线l的方程解:(1)由椭圆C1的左焦点为F1(1,0),且点
6、P(0,1)在C1上,可得故椭圆C1的方程为y21.(2)由题意分析,直线l斜率存在且不为0,设其方程为ykxb,由直线l与抛物线C2相切得消y得k2x2(2bk4)xb20,1(2bk4)24k2b20,化简得kb1.由直线l与椭圆C1相切得消y得(2k21)x24bkx2b220,2(4bk)24(2k21)(2b22)0,化简得2k2b21.联立得解得b4b220,b22或b21(舍去),b时,k,b时,k.即直线l的方程为yx或yx.12(2014海淀三模)已知椭圆C:1(ab0)的四个顶点恰好是一边长为2,一内角为60的菱形的四个顶点(1)求椭圆C的方程;(2)若直线y kx交椭圆C
7、于A,B两点,在直线l:xy30上存在点P,使得PAB为等边三角形,求k的值解:(1)因为椭圆C:1(ab0)的四个顶点恰好是一边长为2,一内角为60的菱形的四个顶点所以a,b1,椭圆C的方程为y21.(2)设A(x1,y1),则B(x1,y1),当直线AB的斜率为0时,AB的垂直平分线就是y轴,y轴与直线l:xy30的交点为P(0,3),又因为|AB|2,|PO|3,所以PAO60,所以PAB是等边三角形,所以直线AB的方程为y0,当直线AB的斜率存在且不为0时,则直线AB的方程为ykx,所以化简得(3k21)x23,所以|x1|,则|AO|.设AB的垂直平分线为yx,它与直线l:xy30的交点记为P(x0,y0),所以解得则|PO|,因为PAB为等边三角形,所以应有|PO|AO|,代入得,解得k0(舍去),k1.综上,k0或k1.