1、人教版七年级上册数学教案:3.3.4解一元一次方程去分母(2)334解一元一次方程去分母(2)教学目标1、进一步掌握利用一元一次方程解决实际问题;2、经历分析“工程问题”中数量关系过程,培养分析问题和解决问题的能力。重点难点工程问题中的工作量、工作效率、工作时间的关系是重点,把全部工作量看作1是难点。教学方法指导探究,合作交流教学资源小黑板 教学过程一、复习导入在小学里我们学习过工程问题,知道这类问题中有工作量、工作时间和工作效率这三种量。那么工作量、工作时间和工作效率之间有怎样的关系呢?工作量=工作时间工作效率如果一件工作甲独做a小时完成,那么甲独做1小时可完成多少工作量?二、例题例1 整理
2、一批图书,由一个人做要40小时完成。现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体应先安排多少人工作?分析:一个人的工作效率是多少?1/40。问题中的等量关系是什么?增加工人前完成的工作量+增加工人后完成的工作量=1设先安排x人工作,则x人4小时完成的工作量是多少?4x/40。增加2人和“他们”(即x人)一起工作8小时完成的工作量是多少?8(x+2)/40。由此可得方程 4x/40+8(x+2)/40=1学生解方程,得x=2。答:应先安排2名工人工作4小时。例2 水池有一个进水管,6小时可注满空池,池底有一个出水管,8小时可放完满池的水
3、,如果同时打开进水管和出水管,那么多少小时可以把空池注满?分析:问题中的等量关系是什么?注入的水量放出的水量=1设x小时可以把空池注满,那么注入的水量是多少?放出的水量是多少?1/6x;1/8x。由此可得方程 1/6x1/8x=1解得x=24。答:24小时可以把空池注满。三、课堂练习某地下管道由甲队单独铺设需要3天完成,乙队单独铺设要5天完成,甲队铺设了1/5的工作量后,为了加快进度,乙队加入,从另一端铺设,问管道铺好,乙队做了多少天?四、课堂小结工程问题中要善于把握什么是总工作量,总工作量可以看成“1”;工程问题中的等量关系一般是各部分完成的工作量之和等于总工作量“1”。作业:课本102面12、8、9。五、板书设计: 解一元一次方程去分母一、问题导入二、例题三、课堂练习