收藏 分享(赏)

2016全国通用高考数学文科二轮专题复习课件 第二部分指导二模板8 全面掌握解答题的8个模板规范答题拿高分.ppt

上传人:高**** 文档编号:149956 上传时间:2024-05-25 格式:PPT 页数:7 大小:842.50KB
下载 相关 举报
2016全国通用高考数学文科二轮专题复习课件 第二部分指导二模板8 全面掌握解答题的8个模板规范答题拿高分.ppt_第1页
第1页 / 共7页
2016全国通用高考数学文科二轮专题复习课件 第二部分指导二模板8 全面掌握解答题的8个模板规范答题拿高分.ppt_第2页
第2页 / 共7页
2016全国通用高考数学文科二轮专题复习课件 第二部分指导二模板8 全面掌握解答题的8个模板规范答题拿高分.ppt_第3页
第3页 / 共7页
2016全国通用高考数学文科二轮专题复习课件 第二部分指导二模板8 全面掌握解答题的8个模板规范答题拿高分.ppt_第4页
第4页 / 共7页
2016全国通用高考数学文科二轮专题复习课件 第二部分指导二模板8 全面掌握解答题的8个模板规范答题拿高分.ppt_第5页
第5页 / 共7页
2016全国通用高考数学文科二轮专题复习课件 第二部分指导二模板8 全面掌握解答题的8个模板规范答题拿高分.ppt_第6页
第6页 / 共7页
2016全国通用高考数学文科二轮专题复习课件 第二部分指导二模板8 全面掌握解答题的8个模板规范答题拿高分.ppt_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、模板8 导数与不等式恒成立问题【例 8】(满分 12 分)设 f(x)(xa)ln xx1,曲线 yf(x)在点(1,f(1)处的切线与直线 2xy10 垂直.(1)求 a 的值;(2)若对x1,),f(x)m(x1)恒成立,求 m 的范围.规范解答(1)f(x)ln xxax(x1)(xa)ln x(x1)2,2 分由 f(1)12,即2(1a)412,解得 a0.4 分(2)由(1)知 f(x)xln xx1,当 x1 时,f(x)m(x1),即xln xx1m(x1),可化为 ln xmxmx0,6 分设 g(x)ln xmxmx,g(x)1xmmx2mx2xmx2.8 分设(x)mx2

2、xm,当 m0 时,g(x)0,g(x)g(1)0,不合题意.9 分当 m0 时,10 时,即 m12,g(x)0,g(x)g(1)0,符合题意.10 分20 时,0m12,(1)12m0,不合题意.11 分综上,m 的取值范围是12,.12 分解题模板 第一步 求f(x)的导数;第二步 求参数a,确定函数f(x)的解析式;第三步 将不等式进行转化;第四步 构造函数g(x);第五步 求g(x),转化为一元二次函数再进行求解;第六步 规范结论,查看关键点.【训练 8】(2015天津卷)已知函数 f(x)4xx4,xR.(1)求 f(x)的单调区间;(2)设曲线 yf(x)与 x 轴正半轴的交点为

3、 P,曲线在点 P 处的切线方程为 yg(x),求证:对于任意的实数 x,都有 f(x)g(x);(3)若方程 f(x)a(a 为实数)有两个实数根 x1,x2,且 x1x2,求证:x2x1a3134.(1)解 由f(x)4xx4,可得f(x)44x3.当f(x)0,即x1时,函数f(x)单调递增;当f(x)0,即x1时,函数f(x)单调递减.所以,f(x)的单调递增区间为(,1),单调递减区间为(1,).(2)证明 设点 P 的坐标为(x0,0),则 x0134,f(x0)12.曲线 yf(x)在点 P 处的切线方程为 yf(x0)(xx0),即 g(x)f(x0)(xx0).令函数 F(x

4、)f(x)g(x),即 F(x)f(x)f(x0)(xx0),则 F(x)f(x)f(x0).由于 f(x)4x34 在(,)上单调递减,故 F(x)在(,)上单调递减,又因为 F(x0)0,所以当 x(,x0)时,F(x)0,当 x(x0,)时,F(x)0,所以 F(x)在(,x0)上单调递增,在(x0,)上单调递减,所以对于任意的实数 x,F(x)F(x0)0,即对于任意的实数 x,都有 f(x)g(x).(3)证明 由(2)知 g(x)13124x.设方程 g(x)a 的根为 x2,可得 x2 a12134.因为 g(x)在(,)上单调递减,又由(2)知 g(x2)f(x2)ag(x2),因此 x2x2.类似地,设曲线 yf(x)在原点处的切线方程为 yh(x),可得 h(x)4x.对于任意的 x(,),有 f(x)h(x)x40,即 f(x)h(x).设方程 h(x)a 的根为 x1,可得 x1a4.因为 h(x)4x 在(,)上单调递增,且 h(x1)af(x1)h(x1),因此 x1x1,由此可得 x2x1x2x1a3134.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3