1、回扣练4数列1.(2015镇江模拟)已知等差数列an的公差d0.(1)求证:当n11时,an成等差数列;(2)求an的前n项和Sn.11.设各项均为正数的数列an的前n项和为Sn,满足4Sna4n1,nN*,且a2,a5,a14构成等比数列.(1)证明:a2;(2)求数列an的通项公式;(3)证明:对一切正整数n,有.12.(2015扬州模拟)设各项均为正数的数列an的前n项和为Sn,且Sn满足S(n2n3)Sn3(n2n)0,nN*.(1)求a1的值;(2)求数列an的通项公式;(3)证明:对一切正整数n,有.答案精析回扣4数列1.45解析a4a6a2a810,a4a624,d0,a6a10
2、4d10,所以an1an2,所以当n11时,an成等差数列.(2)解由4a1a2a13,得a13或a11.又a1,a2,a3,a4,a11成等比数列,所以an1an0 (n10),q1,而a110,所以a10,从而a13.所以an所以Sn11.(1)证明当n1时,4a1a5,a4a15,因为an0,所以a2.(2)解当n2时,4Sn1a4(n1)1,4an4Sn4Sn1aa4,aa4an4(an2)2,因为an0,所以an1an2,当n2时,an是公差d2的等差数列.因为a2,a5,a14构成等比数列,aa2a14,(a26)2a2(a224),解得a23,由(1)可知,4a1a54,a11,又因为a2a1312,则an是首项a11,公差d2的等差数列.数列an的通项公式为an2n1.(3)证明.12.(1)解令n1代入得a12(负值舍去).(2)解由S(n2n3)Sn3(n2n)0,nN*得,Sn(n2n)(Sn3)0.又已知各项均为正数,故Snn2n.当n2时,anSnSn1n2n(n1)2(n1)2n,当n1时,a12也满足上式,所以an2n,nN*.(3)证明4k22k(3k23k)k2kk(k1)0,kN*,4k22k3k23k,().()(1).