收藏 分享(赏)

八年级数学下册 第十九章 一次函数(五种类型一次函数解析式的确定)(新版)新人教版.doc

上传人:高**** 文档编号:1482632 上传时间:2024-06-07 格式:DOC 页数:4 大小:38.50KB
下载 相关 举报
八年级数学下册 第十九章 一次函数(五种类型一次函数解析式的确定)(新版)新人教版.doc_第1页
第1页 / 共4页
八年级数学下册 第十九章 一次函数(五种类型一次函数解析式的确定)(新版)新人教版.doc_第2页
第2页 / 共4页
八年级数学下册 第十九章 一次函数(五种类型一次函数解析式的确定)(新版)新人教版.doc_第3页
第3页 / 共4页
八年级数学下册 第十九章 一次函数(五种类型一次函数解析式的确定)(新版)新人教版.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、五种类型一次函数解析式的确定确定一次函数的解析式,是一次函数学习的重要内容。下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式例1、若函数y=3x+b经过点(2,-6),求函数的解析式。分析:因为,函数y=3x+b经过点(2,-6),所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。函数的解析式就确定出来了。解:因为,函数y=3x+b经过点(2,-6),所以,把x=2,y=-6代入解析式中,得:-6=32+b,解得:b=-12,所以,函数的解析式是:y=3x-12.二、根据直

2、线经过两个点的坐标,确定函数的解析式例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),求函数的表达式。分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b,因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。解:因为,直线y=kx+b的图像经过A(3,4)和点B(2,7),所以,4=3k+b,7=2k+b,所以,b=4-3k,b=7-2k,所以,4-3k=7-2k,解得:k=-3,所以,函数变为:y=-3x+b,把x=3,y=4代入上式中,得:4=-33+b,解得:b=13,所以,一次函数的解析式为:y=-3x+13。

3、三、根据函数的图像,确定函数的解析式例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。解:因为,函数的图像是直线,所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,设:一次函数的表达式为:y=kx+b,因为,图像经过点A(0,40),B(8,0),所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b

4、中,得:40=k0+b,0=8k+b解得:k=-5,b=40,所以,一次函数的表达式为:y=-5x+40。当汽车没有行驶时,油箱里的油是40升,此时,行驶的时间是0小时;当汽车油箱里的油是0升,此时,行驶的时间是8小时,所以,自变量x的范围是:0x8.四、根据平移规律,确定函数的解析式例4、如图2,将直线向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 (08年上海市)分析:仔细观察图像,直线OA经过坐标原点,所以,直线OA表示的一个正比例函数的图像,并且当x=2时 y=4,这样,我们就可以求出,平移的起始函数的解析式,根据函数平移的规律,就可以确定一次函数的解析式。把正比

5、例函数y=kx(k0)的图像向上或者向下平移|b|个单位,就得到一次函数:y=kx+b(k0,b0)的图像。具体平移要领:当b0时,把正比例函数y=kx(k0)的图像向上平移b个单位,就得到一次函数:y=kx+b(k0)的图像。当b0时,把正比例函数y=kx(k0)的图像向下平移|b|个单位,就得到一次函数:y=kx+b(k0)的图像。解:因为,直线OA经过坐标原点,所以,直线OA表示的一个正比例函数的图像,设y=kx,把x=2, y=4代入上式,得:4=2k,解得:k=2,所以,正比例函数的解析式为:y=2x,所以,直线向上平移1个单位,所得解析式为:y=2x+1,所以,这个一次函数的解析式

6、是y=2x+1。五、根据直线的对称性,确定函数的解析式例5、已知直线y=kx+b与直线y= -3x+7关于y轴对称,求k、b的值。分析:直线y=kx+b与直线y= -3x+7关于y轴对称,所以,对称点的横坐标互为相反数,纵坐标保持不变,这可以是解题的理论依据,当然,也可以从已知直线解析式的图像上,确定出两个点的坐标,分别求出它们关于y轴的对称点的坐标,然后利用待定系数法,计算出k、b的值。解法1:设A(x,y)是直线y= -3x+7上一个点,其关于y轴对称的点的坐标为(-x,y ),则有:y= -3x+7,y= -kx+b整理,得:-3x+7= -kx+b,比较对应项,得:k=3,b=7。解法

7、2:设A(m,n)是直线y= -3x+7上一个点,其关于y轴对称的点的坐标为(a,b),则有:b=n,m=-a,因为,A(m,n)是直线y= -3x+7上一个点,所以,点的坐标满足函数的表达式,即n=-3m+7,把n=b,m=-a,代入上式,得:b=-3(-a)+7,整理,得:b=3a+7,即y=3x+7,它实际上与直线y=kx+b是同一条直线,比较对应项,得:k=3,b=7。解法3:因为,y=kx+b,所以,x=,因为,y= -3x+7,所以,x=,因为,直线y=kx+b与直线y= -3x+7关于y轴对称,所以,两直线上点的坐标,都满足纵坐标相同,横坐标坐标互为相反数,所以,= -=,比较对应项,得:y-b= y-7,k=3,所以,k=3,b= 7。解法4、因为,直线y= -3x+7,所以,当x=1时,y=-31+7=4,即点的坐标(1,4);当x=2时,y=-32+7=1,即点的坐标(2,1);因此,(1,4)、(2,1)关于y轴对称的坐标分别为(-1,4)、(-2,1),所以,点(-1,4)、(-2,1)都在直线y=kx+b,所以,留一个练习:1、已知直线y=kx+b与直线y= -3x+7关于x轴对称,求k、b的值。2、已知直线y=kx+b与直线y= -3x+7关于原点对称,求k、b的值。参考答案:1、k=3,b=-7.2、k=-3,b=-7.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3