1、课时作业一、选择题1推理“矩形是平行四边形;三角形不是平行四边形;三角形不是矩形”中的小前提是()ABC D和B由演绎推理三段论可知,是大前提;是小前提;是结论故选B.2正弦函数是奇函数,f(x)sin(x21)是正弦函数,因此f(x)sin(x21)是奇函数,以上推理()A结论正确 B大前提不正确C小前提不正确 D全不正确C因为f(x)sin(x21)不是正弦函数,所以小前提不正确. 3在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则,推广到空间可以得到类似结论;已知正四面体PABC的内切球体积为V1,外接球体积为V2,则()A. B.C. D.D正四面体的内切
2、球与外接球的半径之比为13,故.4观察如图所示的正方形图案,每条边(包括两个端点)有n(n2,nN*)个圆点,第n个图案中圆点的总数是Sn.按此规律推断出Sn与n的关系式为()ASn2n BSn4nCSn2n DSn4n4D由n2,n3,n4的图案,推断第n个图案是这样构成的:各个圆点排成正方形的四条边,每条边上有n个圆点,则圆点的个数为Sn4n4.5下列推理中属于归纳推理且结论正确的是()A设数列an的前n项和为Sn.由an2n1,求出S112,S222,S332,推断:Snn2B由f(x)xcos x满足f(x)f(x)对 xR都成立,推断:f(x)xcos x为奇函数C由圆x2y2r2的
3、面积Sr2,推断:椭圆1(ab0)的面积SabD由(11)221,(21)222,(31)223,推断:对一切nN*,(n1)22nA选项A由一些特殊事例得出一般性结论,且注意到数列an是等差数列,其前n项和等于Snn2,选项D中的推理属于归纳推理,但结论不正确因此选A.二、填空题6(2014杭州模拟)设n为正整数,f(n)1,计算得f(2),f(4)2,f(8),f(16)3,观察上述结果,可推测一般的结论为_解析由前四个式子可得,第n个不等式的左边应当为f(2n),右边应当为,即可得一般的结论为f(2n).答案f(2n)7在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三
4、角形,按图所标边长,由勾股定理有:c2a2b2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥OLMN,如果用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么类比得到的结论是_解析将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得SSSS.答案SSSS三、解答题8在数列an中,a11,an1,nN*,猜想这个数列的通项公式,这个猜想正确吗?请说明理由解析在an中,a11,a2,a3,a4,所以猜想an的通项公式an.这个猜想是正确的,证明如下:因为a11,an1,所以,即,所以数列是以1为首项,为公差的等差数列,所以1(n1
5、)n,所以通项公式an.9某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形(1)求出f(5)的值;(2)利用合情推理的“归纳推理思想”归纳出f(n1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;(3)求的值解析(1)f(5)41.(2)因为f(2)f(1)441,f(3)f(2)842,f(4)f(3)1243,f(5)f(4)1644,由上式规律,所以得出f(n1)f(n)4n.因为f(n1)f(n)4n,所以f(n1)f(n)4n,f(n)f(n1)4(n1)f(n2)4(n1)4(n2)f(n3)4(n1)4(n2)4(n3)f(1)4(n1)4(n2)4(n3)42n22n1.(3)当n2时,(),11.