ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:562KB ,
资源ID:1463204      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1463204-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《首发》广东省深圳市高级中学2014—2015学年度高二上学期期中考试数学(文) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《首发》广东省深圳市高级中学2014—2015学年度高二上学期期中考试数学(文) WORD版含答案.doc

1、高级中学 2014-2015 学年第一学期期中测试高二数学(文科)命题人:何永丽审题人:高军本试卷分为第卷(选择题)和第卷(非选择题)两部分,第卷为 1-10 题,共 50分,第卷为 11-20 题,共 100 分,满分 150 分考试用时 120 分钟第卷(选择题共 50 分)一选择题:(本大题共 10 小题,每小题 5 分,共 50 分在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.命题 p:3 是奇数,q:5 是偶数,则下列说法中正确的是()Ap 或 q 为真Bp 且 q 为真C非 p 为真D非 q 为假2.“02 xx”是“1x”的()A充分而不必要条件 B.必要而不充分条

2、件C充要条件 D.既不充分也不必要条件3.圆心在直线 270 xy上,且与 y 轴交于点(0,4)A,(0,2)B的圆的标准方程为()A.22(3)(2)5xyB.22(2)(3)5xyC.22(2)(3)5xyD.22(2)(3)5xy4.若直线0 xya与圆22()2xay相切,则a()A1 B1 C2D1 或15.设双曲线22221(0,0)xyabab的虚轴长为 2,焦距为 2 3,则双曲线的渐近线方程为()A.2yx B.2yx C.22yx D.12yx 6.函数)(xf的定义域为开区间),(ba,导函数)(xf 在),(ba内的图象如图所示,则函数)(xf在开区间),(ba内有极

3、大值点()A.1 个B.2 个C.3个D.4 个7.过点 P(1,4)作圆0126422yxyx的切线,则切线长为()A3B 5C 10D58.与直线 430 xy平行的抛物线22yx的切线方程是()A 410 xy B.410 xy C 420 xyD.420 xy9.O 为坐标原点,F 为抛物线 C:24 2yx的焦点,P 为 C 上一点,若|PF|4 2,则POF的面积为()A.2 B.2 2C.2 3D.410.已知 xf xx e,方程 210fxtf xtR 有四个实数根,则 t 的取值范围为()A.21,eeB.21,ee C.21,2eeD.212,ee第卷(非选择题共 100

4、 分)二填空题:(本大题共 4 小题,每小题 5 分,满分 20 分)11.已知xxxfcosln)(,则()2f=.12.2,10 xR xax 为假命题,则实数a 的取值范围为.13.若椭圆2215xym 的离心率为 105,则实数 m 的值为.14.设 F1,F2 是双曲线 C:22221axyb(a0,b0)的两个焦点,若在 C 上存在一点 P,使PF1PF2,且PF1F2=30,则双曲线 C 的离心率为.abxy)(xfyOabxy)(xfyO(第 6 题)三解答题:(本大题共 6 小题,共 80 分解答应写出文字说明,证明过程或演算步骤)15.(本小题满分 12 分)已知函数()s

5、in(),(0)6f xx的最小正周期为.(1)求 和()12f 的值;(2)求函数()f x 的最大值及相应 x 的集合.16.(本小题满分 12 分)设直线2310 xy和圆22230 xyx相交于点 A、B.(1)求弦 AB 的垂直平分线方程;(2)求弦 AB 的长.17.(本小题满分 14 分)设函数xexxf221)(.(1)求函数)(xf的单调区间;(2)若当2,2x时,不等式mxf)(恒成立,求实数m 的取值范围.18(本小题满分 14 分)设12,F F 分别是椭圆2222:1xyC ab(0)ab的左、右焦点,椭圆C 上的点3(1,)2A到12,F F 两点的距离之和等于 4

6、.(1)求椭圆C 的方程;(2)设点 P 是椭圆C 上的动点,1(0,)2Q,求 PQ 的最大值.19.(本小题满分 14 分)如图所示,抛物线 E 关于 x 轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.(1)求抛物线 E 的标准方程及其准线方程;(2)当 PA 与 PB 的斜率存在且倾斜角互补时,求 y1y2 的值及直线 AB 的斜率20.(本小题满分 14 分)已知函数()axf xax21,()lng xaxx(a 0).(1)当a 1时,求函数()f x 的极值;(2)求证:对于任意12,0,ex x,总有12()()g xf x成立.高

7、级中学 2014-2015 学年第一学期期中考试高二数学(文科)答题卷一、选择题(每题 5 分,10 题共 50 分)二、填空题(每题 5 分,4 题共 20 分)11.12.13.14.三、解答题:(本大题 6 小题,满分 80 分解答须写出文字说明、证明过程和演算步骤)15.(本小题满分 12 分)16.(本小题满分 12 分)题号12345678910答案17.(本小题满分 14 分)18.(本小题满分 14 分)19.(本小题满分 14 分)20.(本小题满分 14 分)高级中学 2014-2015 学年第一学期期中考试高二数学(文科)答题卷解:(1)函数()sin()6f xx的周期

8、是 且0 T2,解得2 3 分()sin(2)6f xx4 分3()sin(2)sin1212632f 6 分(2)1sin(2)16x.8 分 当 22()62xkkZ即()6xkkZ时()f x 取得最大值 1.10 分此时 x 的集合为,6x xkkZ.12 分16.(本小题满分 12 分)解:(1)圆方程可整理为:4)1(22yx,圆心坐标为(1,0),半径 r=2.2 分易知弦 AB 的垂直平分线l 过圆心,且与直线 AB 垂直,而23,321 kk AB.4 分所以,由点斜式方程可得:),1(230 xy整理得:0323yx.6 分(2)圆心(1,0)到直线,13323|12|01

9、3222dyx的距离为.8 分故.135592)133(22|22AB12 分17.(本小题满分 14 分)解:(1))2(2121)(2xxeexxexfxxx.2 分令0)2(xxe x,得20 xx或,)(xf的增区间为)2,(和),0(.4 分令0)2(xxe x,得02x,)(xf的减区间为)0,2(.6 分(2)因为当2,2x时,不等式恒mxf)(成立等价于max()f xm.8 分因为2,2x,令0)(xf,得2x,或0 x,x-2(-2,0)0(0,2)2()fx-0+)(xf22e022e2max()2f xe.12 分22em.14 分18.(本小题满分 14 分)解:(1

10、)椭圆C 的焦点在 x 轴上,由椭圆上的点 A 到12,F F 两点的距离之和是 4,得24a 即2a,又3(1,)2A在椭圆上,223()1212b,解得23b,于是21c 所以椭圆C 的方程是22143xy6 分(2).设(,)P x y,则22143xy,22443xy.8 分222222214111713()4()52343432PQxyyyyyyy 10 分又33y.12 分当32y 时,max5PQ14 分19.(本小题满分 14 分)解:(1)由已知条件,可设抛物线的方程为 y22px(p0).1 分点 P(1,2)在抛物线上,222p1,解得 p2.3 分故所求抛物线的方程是

11、y24x.4 分准线方程是 x1.6 分(2)设直线 PA 的斜率为 kPA,直线 PB 的斜率为 kPB,则 kPAy12x11(x11),kPBy22x21(x21),PA 与 PB 的斜率存在且倾斜角互补,kPAkPB.8 分由 A(x1,y1),B(x2,y2)均在抛物线上,得y214x1,y224x2,y1214y211 y2214y221y12(y22)y1y24.12 分由得,y21y224(x1x2),kABy1y2x1x24y1y21(x1x2).14 分20.(本小题满分 14 分)解:(1)函数()f x 的定义域为 R,()()()()()xxxfxxx22222111

12、11.1 分当 x 变化时,()fx,()f x 的变化情况如下表:5 分 当 x=-1 时,()f x有 极 小值,极小值为12当 x=1 时,x(,)11(,)1 11(,)1()fx0()f x1232()f x 有极大值,极大值为 327 分(2)()()()()()()axaxxfxxx2222211111.当 a 0 时,当 x 变化时,()fx,()f x 的变化情况如下表:所 以()f x在(,)0 1 上单调递增,在(,e1上单调递减,且2e(e)(0)e1afaaf.所以(0,ex时,min()f xa.9 分因为()lng xaxx,所以()1ag xx,令()0g x,

13、得 xa当0ea时,由()0g x,得0 xa;由()0g x,得 xa,所以函数()g x 在(0,)a 上单调递增,在(,ea上单调递减.所以max()()lng xg aaaa.因(ln)(2ln)(2ln e)0aaaaaaaa,对 任 意12,0,ex x,总 有12()()g xf x12 分当ea 时,()0g x在(0,e 上恒成立,所以函数()g x 在(0,e 上单调递增,max()(e)e g xgaa.所以对于任意12,0,ex x,仍有12()()g xf x.综上所述,对于任意12,0,ex x,总有12()()g xf x.14 分x(,)11(,)1 11(,)1()fx0()f x

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3