1、一、选择题1已知log7log3(log2x)0,那么等于()A.B.C. D.解析:由条件知,log3(log2x)1,log2x3,x8,x.答案:C2若函数yf(x)是函数yax(a0,且a1)的反函数,且f(2)1,则f(x)()Alog2x B.Clogx D2x2解析:f(x)logax,f(2)1,loga21,a2.f(x)log2x.答案:A3已知实数alog45,b0,clog30.4,则a,b,c的大小关系为()Abca BbacCcab Dcb1,b01,clog30.40,故cba.答案:D4已知0xy1,mlog2xlog2y,则有()Am0 B0m1C1m2解析:
2、由0xy1得0xy1,故mlog2xlog2ylog2xylog210.答案:A5(2012嘉兴模拟)若函数f(x)loga(xb)的图象如图,其中a,b为常数,则函数g(x)axb的大致图象是()解析:由f(x)loga(xb)的图象可知0a1,且0b1,则函数g(x)axb的大致图象是D.答案:D二、填空题6函数y 的定义域为_解析:要使函数有意义即02x31,0,解得x.且u2x25x3在(,1)上是减函数,在上是增函数当a1时,ylogau是增函数,则函数f(x)的单调减区间是(,1),单调增区间是.当0af(1),且log2f(x)f(1)解:(1)f(x)x2xb,f(log2a)(log2a)2log2ab,由已知(log2a)2log2abb,log2a(log2a1)0.a1,log2a1,a2.又log2f(a)2,f(a)4.a2ab4,b4a2a2.故f(x)x2x2.从而f(log2x)(log2x)2log2x2(log2x)2.当log2x,即x时,f(log2x)有最小值.(2)由题意0x1.