ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:1.66MB ,
资源ID:140895      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-140895-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(四川省成都外国语学校2019-2020学年高二数学5月月考试题 文(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

四川省成都外国语学校2019-2020学年高二数学5月月考试题 文(含解析).doc

1、四川省成都外国语学校2019-2020学年高二数学5月月考试题 文(含解析)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数,若是实数,则实数的值为 ( )A. B. C. D. 【答案】C【解析】试题分析:,所以.故C正确.考点:复数的运算.2. 命题“,”的否定为( )A. ,B. ,C. ,D. ,【答案】A【解析】【分析】根据全称命题与特称命题之间的关系求解.【详解】因为全称命题的否定是特称命题,所以命题“,”的否定为“,”故选A【点睛】本题考查全称命题和特称命题的否定,属于基础题.3. 曲线 在点 处的切线方程为A.

2、 B. C. D. 【答案】B【解析】【分析】先对曲线求导,再根据点斜式写出切线方程即可【详解】由,所以过点切线方程为答案选B【点睛】本题考查在曲线上某一点切线方程的求法,相对比较简单,一般解题步骤为:先求曲线导数表达式,求出,最终表示出切线方程4. 已知双曲线以椭圆的焦点为顶点,左右顶点为焦点,则的渐近线方程为( )A. B. C. D. 【答案】A【解析】【分析】根据已知条件求出值,即可求解.【详解】由题意知的焦点坐标为,顶点为,故渐近线方程为.故选:A.【点睛】本题考查双曲线的标准方程,以及简单的几何性质,属于基础题.5. 执行如图所示的程序框图,则输出的值是( )A. B. C. D.

3、 【答案】C【解析】【分析】根据程序框图列出算法循环的每一步,结合判断条件得出输出的的值.【详解】执行如图所示的程序框图如下:不成立,;不成立,;不成立,;不成立,.成立,跳出循环体,输出值为,故选C.【点睛】本题考查利用程序框图计算输出结果,对于这类问题,通常利用框图列出算法的每一步,考查计算能力,属于中等题.6. 已知命题若直线与抛物线有且仅有一个公共点,则直线与抛物线相切,命题若,则方程表示椭圆.下列命题是真命题的是( )A. B. C. D. 【答案】B【解析】【分析】若直线与抛物线的对称轴平行,满足条件,此时直线与抛物线相交,可判断命题为假;当时,命题为真,根据复合命题的真假关系,即

4、可得出结论.【详解】若直线与抛物线的对称轴平行,直线与抛物线只有一个交点,直线与抛物不相切,可得命题是假命题,当时,方程表示椭圆命题是真命题,则是真命题.故选:B.【点睛】本题考查复合命题真假的判断,属于基础题.7. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒,若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A. B. C. D. 【答案】B【解析】试题分析:因为红灯持续时间为40秒,所以这名行人至少需要等待15秒才出现绿灯的概率为,故选B.【考点】几何概型【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位

5、置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法8. 阿基米德(公元前287年公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为( )A. B. C. D. 【答案】D【解析】【分析】设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为,则其母线长为,因为圆

6、柱的表面积公式为,所以,解得,因为圆柱的体积公式为,所以,由题知,圆柱内切球的体积是圆柱体积的,所以所求圆柱内切球的体积为.故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.9. 直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D. 【答案】A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与

7、圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题10. 函数,在区间上单调递减,则实数的取值范围是( )A. B. C. D. 【答案】C【解析】【分析】先求得导函数,根据函数单调递减可知在区间上恒成立,即可由定义域及不等式求得的取值范围.【详解】函数,.则,因为在区间上单调递减,则在区间上恒成立,即, 所以在区间上恒成立,所以,解得,故选:C.【点睛】本题考查了函数单调性与导函数关系,由函数单调性确定参数的取值范围,属于基础题.11. 已知,分别为双曲线的左、右焦点,以为直径的圆与双曲线在第一象限和第三象限的交点分别为,设四边形的周长为,面积为,且满足,则该双曲线的离心率为( )A

8、. B. C. D. 【答案】C【解析】【分析】由,可得,然后,即,又由可得,然后可得,然后即可求出.【详解】由题意可得,联立两个方程可得,又为直径,所以四边形为矩形,所以,即,即,由,得,即,所以,即.故选:C【点睛】本题主要考查双曲线的几何性质、圆的性质的综合应用,考查的核心素养是数学运算、逻辑推理.12. 定义在上的函数满足为自然对数的底数),其中为的导函数,若,则的解集为()A. B. C. D. 【答案】C【解析】【分析】由,以及,联想到构造函数,所以等价为,通过导数求的单调性,由单调性定义即可得出结果【详解】设,等价为,故在上单调递减,所以,解得,故选C【点睛】本题主要考查利用导数

9、研究函数的单调性的问题,利用单调性定义解不等式,如何构造函数是解题关键,意在考查学生数学建模能力非选择题部分(共90分)二、填空题本题共4小题,每小题5分,共20分.13. 在复平面内,与复数对应的点位于第_象限.【答案】四【解析】分析】,然后即可得出答案.【详解】因为,所以其对应的点为,位于第四象限故答案为:四【点睛】本题考查的是复数的计算及其几何意义,较简单.14. 已知函数,则的单调递增区间为_【答案】【解析】【分析】求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可【详解】解:的定义域是,令,解得:,故在递增,故答案为【点睛】本题考查了函数的单调性问题,考查导数的应用,是一道

10、基础题15. 已知,则方程恰有2个不同的实根,实数取值范围_.【答案】【解析】【分析】采用数形结合,先计算直线直线与曲线相切时,的值,然后讨论,的情况,最后判断可得结果.【详解】作出函数的图象如图所示:先考虑直线与曲线相切时,的取值,设切点为,对函数求导得,切线方程为,即,则有,解得,由图象可知,当时,直线与函数在上的图象没有公共点,在有一个公共点,不合乎题意;当时,直线与函数在上的图象没有公共点,在有两个公共点,合乎题意;当时,直线与函数在上的图象只有一个公共点,在有两个公共点,不合乎题意;当时,直线与函数在上的图象只有一个公共点,在没有公共点,不合乎题意.综上所述,实数的取值范围是,故答案

11、为:.【点睛】本题考查方程根的个数求解参数,采用数形结合,形象直观,考查分析能力以及计算能力,属中档题.16. 已知抛物线的焦点,点是抛物线上一点,以为圆心的圆与直线交于、两点在的上方),若,则抛物线的方程为 _.【答案】【解析】【分析】依题意作图,可以把放在直角三角形中,可得,由抛物线定义转化,即可得到与的关系,再代入方程中即可求出,则抛物线方程可求【详解】解:如图所示,过点作抛物线的准线,垂足为,交准线于,由抛物线定义可得:,即,点是抛物线上一点,即,得故答案为:【点睛】本题考查抛物线的标准方程,利用抛物线的定义进行线段的转化是关键,是中档题三、解答题(本大题共6小题,共70分).17.

12、已知函数在点处的切线方程为(1)求函数的解析式;(2)求函数在区间上的最大值与最小值【答案】(1)(2)见解析【解析】【分析】(1)求出函数的导数,计算f(1),得到关于a的方程,求出a的值,从而求出函数的解析式即可;(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最值即可【详解】(1) 函数在点处的切线的斜率 由题意可知,得 函数的解析式为 (2)由(1)知,令,解得令,解得 令,解得 列表:02119从上表可知,在区间上,当时,取得最大值19, 当时,取得最小值是.【点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,是一道常规题18. 某校从

13、参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组90,100),100,110),140,150后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在120,130)内的频率;(2)估计本次考试的中位数;(3)用分层抽样的方法在分数段为110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段120,130)内的概率【答案】(1)0.3;(2)(3)【解析】【分析】(1)根据频率分布直方图的各小长方形的面积之和为1,求出分数在内的概率;(2)由直方图左右两边面积相等处横坐标计算出中位数;(3)计算出与

14、分数段的人数,用分层抽样的方法求出在各分数段内抽取的人数组成样本,利用古典概率公式求出“从样本中任取2人,至多有1人在分数段内”的概率即可.【详解】(1)分数在120,130)内的频率为1(0.1+0.15+0.15+0.25+0.05)=10.7=0.3;(2)由于图中前3个小矩形面积之和为0.4则设中位数,则,则(3)依题意,110,120)分数段的人数为600.15=9(人),120,130)分数段的人数为600.3=18(人);用分层抽样的方法在分数段为110,130)的学生中抽取一个容量为6的样本,需在110,120)分数段内抽取2人,并分别记为m,n;在120,130)分数段内抽取

15、4人,并分别记为a,b,c,d;设“从样本中任取2人,至多有1人在分数段120,130)内”为事件A,则基本事件有(m,n),(m,a),(m,d),(n,a),(n,d),(a,b),(c,d)共15种;则事件A包含的基本事件有(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)共9种;P(A)=【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直观图左右两边面积

16、相等处横坐标表示中位数.19. 如图,在平行四边形中,以为折痕将折起,使点到达点的位置,且(1)证明:平面平面;(2)为线段上一点,为线段上一点,且,求三棱锥的体积【答案】(1)见解析.(2)1.【解析】分析:(1)首先根据题的条件,可以得到=90,即,再结合已知条件BAAD,利用线面垂直的判定定理证得AB平面ACD,又因为AB平面ABC,根据面面垂直的判定定理,证得平面ACD平面ABC;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,=90,又BAAD,且,所以AB平面ACD又AB平面A

17、BC,所以平面ACD平面ABC(2)由已知可得,DC=CM=AB=3,DA=又,所以作QEAC,垂足为E,则 由已知及(1)可得DC平面ABC,所以QE平面ABC,QE=1因此,三棱锥的体积为点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.20. 在直角坐标系中,曲线的方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,

18、曲线的极坐标方程为.(1)求,交点的直角坐标;(2)设点的极坐标为,点是曲线上的点,求面积的最大值.【答案】(1), ;(2).【解析】【分析】(1)结合,得到曲线的普通方程,即可计算交点坐标.(2)结合三角形面积计算公式, 结合三角函数性质和辅助角公式,可计算最值.【详解】(1),.联立方程组得,解得,所求交点的坐标为,.(2)设,则的面积当时,.【点睛】本题考查了参数方程化为普通方程,考查了极坐标方程化为普通方程,考查了三角函数的辅助角公式,属于中档题.21. 已知点,直线为平面内的动点,过点作直线的垂线,垂足为点,且. (1)求动点的轨迹的方程;(2)过点作直线(与轴不重合)交轨迹于,两

19、点,求三角形面积的取值范围.(为坐标原点)【答案】(1);(2)【解析】【分析】(1)处理向量等式,代入向量坐标,计算方程,即可(2)分直线斜率是否存在考虑,设出直线l的方程,代入椭圆方程,用m表示三角形面积,换元,结合函数性质,计算范围,即可【详解】(1)设动点,则由即 化简得 (2)由(1)知轨迹的方程为,当直线斜率不存在时,当直线斜率存在时,设直线方程为 ,设 由得.则, 令,则 令,则,当时,在上单调递增,综上所述,三角形面积的取值范围是【点睛】本道题考查了曲线轨迹方程计算,考查了直线与椭圆位置关系,考查了函数的性质,属于综合性问题,难度偏难22. 设函数.(1)求的单调区间;(2)当

20、时,若对,都有()成立,求的最大值.【答案】(1)答案不唯一,具体见解析(2)0【解析】【分析】(1),对分类讨论,可得其单调区间(2)当时,对,都有恒成立, ,令,只需,利用导数研究其单调性即可得出【详解】解:(1),.当时,在恒成立,在是单减函数.当时,令,解之得.从而,当变化时,随变化情况如下表:-0+单调递减单调递增由上表中可知,在是单减函数,在是单增函数.综上,当时,的单减区间为;当时,的单减区间为,单增区间为.(2)当,为整数,且当时,恒成立.令,只需;又,由(1)得在单调递增,且,所以存在唯一的,使得,当,即单调递减,当,即单调递增,所以时,取得极小值,也是最小值,当时,而在为增函数,即.而,即所求的最大值为0.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、函数的零点、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于中档题

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3