1、基础巩固题组(建议用时:30分钟)一、选择题1.某中学进行了该学年度期末统一考试,该校为了了解高一年级1 000名学生的考试成绩,从中随机抽取了100名学生的成绩,就这个问题来说,下面说法正确的是()A.1 000名学生是总体B.每个学生是个体C.1 000名学生的成绩是一个个体D.样本的容量是100解析1 000名学生的成绩是总体,其容量是1 000,100名学生的成绩组成样本,其容量是100.答案D2.(2016柳州、北海、钦州三市联考)某企业在甲、乙、丙、丁四个城市分别有150个,120个,190个,140个销售点.为了调查产品的质量,需从这600个销售点中抽取一个容量为100的样本,记
2、这项调查为;在丙城市有20个特大型销售点,要从中抽取8个调查,记这项调查为,则完成,这两项调查宜采用的抽样方法依次为()A.分层抽样法、系统抽样法B.分层抽样法、简单随机抽样法C.系统抽样法、分层抽样法D.简单随机抽样法、分层抽样法解析四个城市销售点数量不同,个体存在差异比较明显,选用分层抽样;丙城市特大销售点数量不多,使用简单随机抽样即可.答案B3.在一个容量为N的总体中抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1p2p3 B.p2p3p1C.p1p3p2 D.p1p2p3解析由随机抽样的知
3、识知,三种抽样中,每个个体被抽到的概率都相等,故选D.答案D4.某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150 C.200 D.250解析样本抽取比例为,该校总人数为1 5003 5005 000,则,故n100,选A.答案A5.从编号为150的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,
4、5 D.2,4,6,16,32解析间隔距离为10,故可能编号是3,13,23,33,43.答案B6.(2015湖南卷)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取7人,则其中成绩在区间139,151上的运动员人数是()A.3 B.4 C.5 D.6解析从35人中用系统抽样方法抽取7人,则可将这35人分成7组,每组5人,从每一组中抽取1人,而成绩在139,151上的有4组,所以抽取4人,故选B.答案B二、填空题7.(2015汉中调研)已知某地区中小学生人数和近视情况如下表所示:年级人数近视率小学3 50010
5、%初中4 50030%高中2 00050%为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则:(1)样本容量为_;(2)抽取的高中生中,近视人数为_.解析(1)由题意知,样本容量为(3 5004 5002 000)200.(2)抽取的高中生中,近视人数为2 00020.答案(1)200(2)208.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否达标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则61组抽出的号码为_.解析每组袋数:d20,由题意知抽出的这些号码是以11为首项,20为公差的等差数列,a611160201 211.答案1 2
6、119.某学校高一、高二、高三年级的学生人数之比为334,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取_名学生.解析抽取比例与学生比例一致.设应从高二年级抽取x名学生,则x50310.解得x15.答案1510.某校共有学生2 000名,各年级男、女学生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为_.一年级二年级三年级女生373xy男生377370z解析依题意我们知道二年级的女生有2 0000.19380人,那么三年级的学生人数应该是2 00037337738
7、0370500,即总体中各个年级的人数比为332,故在分层抽样中应在三年级抽取的学生人数为6416.答案16能力提升题组(建议用时:20分钟)11.(1)某学校为了了解2015年高考数学学科的考试成绩,在高考后对1 200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.简单随机抽样法;.系统抽样法;.分层抽样法.问题与方法配对正确的是()A.(1),(2) B.(1),(2)C.(1),(2) D.(1),(2)解析通过分析可知,对于(1),应采用分层抽样法,对于(2),应采用简单随机
8、抽样法.答案A12.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,270,使用系统抽样时,将学生统一随机编号为1,2,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:7,34,61,88,115,142,169,196,223,250;5,9,100,107,111,121,180,195,200,265;11,38,65,92,119,146,173,200,227,254;30,57,84,1
9、11,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是()A.、都不能为系统抽样 B.、都不能为分层抽样C.、都可能为系统抽样 D.、都可能为分层抽样解析在1108之间有4个,109189之间有3个,190270之间有3个,符合分层抽样的规律,可能是分层抽样.同时,从第二个数据起每个数据与前一个的差都为27,符合系统抽样的规律,则可能是系统抽样得到的;同理符合分层抽样的规律,可能是分层抽样,同时,从第二个数据起每个数据与前一个的差都为27,符合系统抽样的规律,则可能是系统抽样得到的,故选D.答案D13.将参加夏令营的600名学生编号为001,002,600.采
10、用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第营区,从301到495在第营区,从496到600在第营区,三个营区被抽中的人数依次为()A.26,16,8 B.25,17,8C.25,16,9 D.24,17,9解析由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(kN*)组抽中的号码是312(k1).令312(k1)300得k,因此第营区被抽中的人数是25;令300312(k1)495得k42,因此第营区被抽中的人数是422517.结合各选项知,选B.答案B14.200名职工年龄分
11、布如图所示,从中随机抽40名职工作样本,采用系统抽样方法,按1200编号为40组,分别为15,610,196200,第5组抽取号码为22,第8组抽取号码为_.若采用分层抽样,40岁以下年龄段应抽取_人.解析将1200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为223537;由已知条件200名职工中40岁以下的职工人数为20050%100,设在40岁以下年龄段中抽取x人,则,解得x20.答案372015.一个总体中有90个个体,随机编号0,1,2,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,9.现用系统抽样方法抽取一个容量为9的样本,规
12、定:如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与mk的个位数字相同,若m8,则在第8组中抽取的号码是_.解析由题意知m8,k8,则mk16,也就是第8组抽取的号码个位数字为6,十位数字为817,故抽取的号码为76.答案7616.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n.解总体容量为6121836.当样本容量是n时,由题意知,系统抽样的间隔为,分层抽样的比例是,抽取的工程师人数为6,技术员人数为12,技工人数为18,所以n应是6的倍数,36的约数,即n6,12,18.当样本容量为(n1)时,总体容量是35人,系统抽样的间隔为,因为必须是整数,所以n只能取6.即样本容量n6.