收藏 分享(赏)

《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx

上传人:高**** 文档编号:1377946 上传时间:2024-06-06 格式:DOCX 页数:40 大小:376.86KB
下载 相关 举报
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第1页
第1页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第2页
第2页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第3页
第3页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第4页
第4页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第5页
第5页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第6页
第6页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第7页
第7页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第8页
第8页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第9页
第9页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第10页
第10页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第11页
第11页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第12页
第12页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第13页
第13页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第14页
第14页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第15页
第15页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第16页
第16页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第17页
第17页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第18页
第18页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第19页
第19页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第20页
第20页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第21页
第21页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第22页
第22页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第23页
第23页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第24页
第24页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第25页
第25页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第26页
第26页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第27页
第27页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第28页
第28页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第29页
第29页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第30页
第30页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第31页
第31页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第32页
第32页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第33页
第33页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第34页
第34页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第35页
第35页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第36页
第36页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第37页
第37页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第38页
第38页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第39页
第39页 / 共40页
《首发》专题05 数列-高考数学(理)二轮专项复习 WORD版含解析.docx_第40页
第40页 / 共40页
亲,该文档总共40页,全部预览完了,如果喜欢就下载吧!
资源描述

1、专题05 数 列本专题的主要内容是数列的概念、两个基本数列等差数列、等比数列这部分知识应该是高考中的重点内容考察数列知识时往往与其他知识相联系,特别是函数知识数列本身就可以看作特殊(定义在N*)的函数因此解决数列问题是常常要用到函数的知识,进一步涉及到方程与不等式本专题的重点还是在两个基本数列等差数列、等比数列上,包括概念、通项公式、性质、前n项和公式51 数列的概念【知识要点】1从函数的观点来认识数列,通过函数的表示方法,来认识数列的表示方法,从而得到数列的常用表示方法通项公式,即:anf(n)2对数列特有的表示方法递推法有一个初步的认识会根据递推公式写出数列的前几项,并由此猜测数列的一个通

2、项公式3明确数列的通项公式与前n项和公式的关系:Sna1a2an;特别注意对项数n的要求,这相当于函数中的定义域【复习要求】1了解数列的概念和几种简单的表示方法(列表、图象、通项公式)2了解数列是自变量为正整数的一类函数【例题分析】例1 根据数列的前几项写出该数列的一个通项公式:(1);(2)2,6,18,54,162;(3)9,99,999,9999,99999;(4)1,0,1,0,1,0;(5);(6);【分析】本题需要观察每一项与项数之间存在的函数关系,猜想出一个通项公式这种通过特殊的元素得到一般的规律是解决问题的常用方法,但得到的规律不一定正确,可经过证明来验证你的结论解:(1) ;

3、(2)an2(3)n1;(3)an10n1;(4);(5);(6)【评析】(1)中分数的考察要把分子、分母分开考察,当然有时分子分母之间有关系;(2)中正负相间的情况一定与(1)的方次有关;(3)中的情况可以扩展为7,77,777,7777,77777;(4)中的分段函数的写法再一次体现出数列是特殊的函数,也可写成,但这种写法要求较高;(5)中的假分数写成带分数结果就很明显了;(6)中的变换要求较高,可根据分子的变化,变换整个分数,如,根据分子,把变为,其他类似找到规律例2 已知:数列an的前n项和Sn,求:数列an的通项公式an,(1)Snn22n2;(2)【分析】已知数列前n项和Sn求通项

4、公式an的题目一定要考虑n1与n2两种情况,即:anSnSn1不包含a1,实际上相当于函数中对定义域的要求解:(1)当n1时,a1S11,当n2时,anSnSn12n3,则.(2)当n1时,当n2时,此公式也适合n1时的情况,则.【评析】分情况求出通项公式an后,应考察两个式子是否能够统一在一起,如果能够统一还是写成一个式子更加简洁;如果不能统一就要写成分段函数的形式,总之分情况讨论后应该有一个总结性结论例3完成下列各题:(1)数列an中,a12,则a3( )A2ln3B22ln3C23ln3D4(2)已知数列an对任意的p,qN*满足apqapaq,且a26,那么a10等于( )A165B3

5、3C30D21(3)数列an中,其中a,b为常数,则ab_【分析】本题中三个小题都涉及数列的递推关系,这类问题,最好的办法是给n赋值,通过特殊的项找到一般的规律解:(1),a2a1ln(11)ln12ln2,a3a2ln(21)ln22ln3,选A(2)apqapaq,a3a21a2a1639,a5a32a3a29615,a10a 55a5a530选C(3)a1a2anan2bn,ab1【评析】这种通过特殊的项解决数列问题的方法今后经常用到,希望大家掌握例4 已知:函数f(x)a1a2xa3x2anxn1,且数列an满足f(1)n2an(nN*),求:数列an的通项【分析】首先要应用f(0)与

6、f(1)这两个条件,由题可看出可能与Sn与an关系有关解:由题知:,f(1)a1a2ann2an,即:Snn2an,则Sn1(n1)2an1(n2),anSnSn1n2an(n1)2an1(n2),(n21)an(n1)2an1(n2),即:,即,当n1时,上式也成立,【评析】本题中,题目给出函数的条件,而f(0)与f(1)的运用就完全转化为数列问题,Sn与an的关系应该是要求掌握的,尤其是在n1出现时,要注意n2的限制,这相当于函数中的定义域而叠乘的方法是求数列通项的基本方法之一练习51一、选择题:1数列的通项公式为( )ABCD2若数列的前四项是3,12,30,60,则此数列的一个通项公式

7、是( )AB5n26n4CD3数列an中,若a11,a21,an2an1an,则a7( )A11B12C13D144数列an的前n项和为Sn,若Sn2(an1),则a2( )A2B1C2D4二、填空题:5数列2,5,2,5,的一个通项公式_6数列an的前n项和Snn2,数列an的前4项是_,an_7若数列an的前n项和Sn2n23n1,则它的通项公式是_8若数列an的前n项积为n2,则a3a5_三、解答题:9已知:数列an中,若,求:数列an前4项,并猜想数列an的一个通项公式10已知:数列1,2,2,3,3,3,4,4,4,4,5,求:数列的第50项52 等差数列与等比数列【知识要点】1熟练

8、掌握等差数列、等比数列的定义:anan1d(常数)(n2)数列an是等差数列;(常数)(n2)数列an是等比数列;由定义知:等差数列中的项an及公差d均可在R中取值,但等比数列中的项an及公比q均为非零实数应该注意到,等差数列、等比数列的定义是解决数列问题的基础,也是判断一个数列是等差数列、等比数列的唯一依据2明确等差中项与等比中项的概念,并能运用之解决数列问题:成等差数列,b叫做a、c的等差中项,由此看出:任意两个实数都有等差中项,且等差中项唯一;b2aca、b、c成等比数列,b叫做a、c的等比中项,由此看出:只有同号的两个实数才有等比中项,且等比中项不唯一;3灵活运用等差数列、等比数列的通

9、项公式an及前n项和公式Sn:等差数列an中,anam(nm)da1(n1)d,;等比数列an中,anamqnma1qn1,;4函数与方程的思想运用到解决数列问题之中:等差数列、等比数列中,首项a1、末项an、项数n,公差d(公比q)、前n项和Sn,五个量中,已知三个量,根据通项公式及前n项和公式,列出方程可得另外两个量等差数列中,可看作一次函数与二次函数的形式,利用函数的性质可以解决数列问题5等差数列、等比数列的性质:等差数列an中,若mnpq,则amanapaq;等比数列an中,若mnpq,则amanapaq;【复习要求】1理解等差数列、等比数列的概念2掌握等差数列、等比数列的通项公式与前

10、n项和公式3能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题4了解等差数列与一次函数、等比数列与指数函数的关系【例题分析】例1完成下列各题:(1)若等差数列an满足a2a44,a3a510,则它的前10项的和S10( )A138B135C95D23(2)各项均为正数的等差数列an中必有( )ABCD【分析】本题在于考察等差数列的基本知识,通项公式及前n项和公式是一切有关数列中考察的重点,注意数列中项数之间的关系解:(1)等差数列an中a 2a44,a3a510,a32,a45,公差d3,首项a14,a10a19d42723,.选C.(2)等差数列an中a4a82

11、a6,等差数列an各项均为正数,由均值不等式,当且仅当a4a8时等号成立即:,选B【评析】本题中涉及到等差数列中的重要性质:若mnpq,则amanapaq,(1)中可直接应用这一性质:a2a4a3a32a3得到结论,但题中所给的答案可看作这一性质的证明,同时,等差数列中通项公式并不一定要用首项表示,可以从任何一项开始表示an,这也是常用的方法,(2)注意观察数列中项数的关系,各项均为正数的要求恰好给运用均值不等式创造了条件,注意等号成立的条件例2完成下列各题:(1)等比数列an满足a1a23,a2a36,则a7( )A64B81C128D243(2)各项均为正数的等比数列an的前n项和为Sn,

12、若S102,S3014,则S40( )A80B30C26D16【分析】本题中各小题是在运用等比数列的基本知识来解决,通项公式与前n项和公式要熟练运用解:(1)数列an是等比数列,a7a1q62664选A(2)方法一:等比数列an的前n项和为Sn,两式相除:,即:1q10q207q102或q103(舍),把q102代入(*)中得到:,选B方法二:a1a2a10、a11a12a20、a21a22a30、a31a32a40、也构成等比数列,设新等比数列的公比为p则:a1a2a10S102、a11a12a202p、a21a22a302p2S3022p2p214,p3或p2,等比数列an的各项均为正数,

13、p2,a1a2a102、a11a12a204、a21a22a308、a31a32a4016,S402481630【评析】(2)中方法一仍是解决此类问题的基本方法,注意把看成整体来求,方法二的方法在等差数列及等比数列中均适用,即:等比数列中第1个n项和、第2个n项和、第n个n项和仍然成等比数列,此时,你知道这时的公比与原数列的么比的关系吗?例3 已知:等差数列an的前n项和为Sn,且S516,S1064,求:S15?【分析】本题是对等差数列的知识加以进一步考察,可以用求和公式,也可运用等差数列的性质加以解决解:方法一:由,则:;方法二:等差数列中:a1a2a3a4a5、a6a7a8a9a10,a

14、11a12a13a14a15这三项也构成等差数列,即a1a2a3a4a5S516,a6a7a8a9a10S10S5641648,a11a12a13a14a15S15S10S1564,24816S1564,S15144方法三:,a1a15a6a10【评析】本题中方法一是直接应用前n项和公式,得出首项与公差,再用公式得出所求,应是基本方法,但运算较繁锁;方法二充分注意到等差数列这一条件,得到的结论可以扩展为等差数列中第1个n项和、第2个n项和、第n个n项和仍然成等差数列,你知道这时的公差与原数列的公差的关系吗?这一方法希望大家掌握;方法三是前n项和公式与等差数列的性质的综合应用,大家可以借鉴例4已

15、知:等差数列an中,且,(1)求证:数列bn是等差数列;(2)若,求数列anbn的通项公式【分析】运用等差数列的两个公式,两个数列都是等差数列,所求通项就离不开首项和公差解:(1)数列an是等差数列,设公差为d,数列bn是等差数列,公差为;(2),数列an、bn是等差数列,【评析】(1)中遇到了证明数列是等差(等比)数列,采取的方法只能是运用定义,满足定义就是,不满足定义就不是例5 已知:等差数列an中,a312,S120,S130,求数列an的公差d的取值范围;【分析】按照所给的条件,把两个不等的关系转化为关于公差d的不等式解:(1)数列an是等差数列,即:,即:,【评析】也可直接运用得到关

16、于a1与d的不等式,再通过通项公式得到a3与a1的关系例6 已知:四个数中,前三个数成等差数列,后三个数成等比数列,第一、四个数的和为16,第二、三个数的和为12,求这四个数【分析】本题中,方程的思想得到明显的体现,实际上数列问题总体上就是解方程的问题,根据所给的条件,加上通项公式、前n项和公式列出方程,解未知数,通过前面的例题大家应该有所体会了解:方法一:设这四个数为:a,b,12b,16a则根据题意得,或,则这四个数为0、4、8、16或15、9、3、1方法二:设这四个数为:ad,a,ad,则根据题意得或,则这四个数为:0、4、8、16或15、9、3、1【评析】列方程首先就要设未知数,题目中

17、要求四个数,但不要就设四个未知数,要知道,方程的个数与未知数的个数一样时才有可能解出,因此在设未知数时就要用到题目中的条件方法一是用“和”设未知数,用数列列方程;方法二是用数列设未知数,用“和”列方程例7 已知:等差数列an中,a410,且a5,a6,a10成等比数列,求数列an前20项的和S20【分析】本题最后要求的是等差数列的前20项和,因此,求首项、公差以及通项公式就是必不可少的解:数列an是等差数列,a5a4d10d,a6a42d102d,a10a46d106d,a5,a6,a10成等比数列,a62a5a10,即:(102d)2(10d)(106d)d0或d15,当d0时,ana410

18、,S20200;当d15时,ana4(n4)d15n70,;【评析】这种等差、等比数列综合运用时,往往出现多解的情况,对于多个解都要一一加以验证,即使不合题意也要说明,然后舍去例8 已知:等差数列an中,an3n16,数列bn中,bnan,求数列bn的前n项和Sn【分析】由于对含有绝对值的问题要加以讨论,因此所求的前n项和Sn应该写成分段函数的形式解:(1)当n5时,an0,则:bnan163n,且b113,;(2)当n6时,an0,则:bnan3n16,此时:S535,b62,由(1)(2)知,【评析】当n6时,前5项和要加在Sn中是经常被忽略的,得到的结果形式上比较复杂,可通过赋值的方法加

19、以验证练习52一、选择题: 1若等差数列的首项是24,且从第10项开始大于零,则公差d的取值范围是( )ABd3CD2若等差数列an的前20项的和为100,则a7a14的最大值为( )A25B50C100D不存在3等比数列an中,若a1a240,a3a460,则a7a8( )A80B90C100D1354等差数列an的前2006项的和S20062008,其中所有的偶数项的和是2,则a1003( )A1B2C3D4二、填空题:5(1)等差数列an中,a6a7a860,则a3a11_;(2)等比数列an中,a6a7a864,则a3a11_;(3)等差数列an中,a39,a93,则a12_;(4)等

20、比数列an中,a39,a93,则a12_6等比数列an的公比为正数,若a11,a516,则数列an前7项的和为_7等差数列an中,若an2n25,则前n项和Sn取得最大值时n_8等比数列an中,a5a6512,a3a8124,若公比为整数,则a10_三、解答题:9求前100个自然数中,除以7余2的所有数的和10已知:三个互不相等的数成等差数列,和为6,适当排列后这三个数也可成等比数列,求:这三个数11已知:等比数列an中,a12,前n项和为Sn,数列an1也是等比数列,求:数列an的通项公式an及前n项和Sn53 数列求和【知识要点】1数列求和就是等差数列、等比数列的求和问题,还应掌握与等差数

21、列、等比数列有关的一些特殊数列的求和问题,2数列求和时首先要明确数列的通项公式,并利用通项公式找到所求数列与等差数列、等比数列之间的联系,利用等差数列、等比数列的求和公式解决问题,3三种常见的特殊数列的求和方法:(1)直接公式法:解决一个等差数列与一个等比数列对应项相加而成的新数列的求和问题;(2)错位相减法:解决一个等差数列与一个等比数列对应项相乘而成的新数列的求和问题;(3)裂项相消法:解决通项公式是等差数列相邻两项乘积的倒数的新数列的求和问题【复习要求】特殊数列求和体现出知识的“转化”思想把特殊数列转化为等差数列、等比数列,而在求和的过程中又体现出方程的思想【例题分析】例1 求和下列各式

22、(1);(2)12222323n2n;(3);(4)【分析】我们遇到的数列求和的问题是一些特殊的数列,即与等差、等比数列密切相关的数列,最后还是回到等差、等比数列求和的问题上解:(1)(2)设:Sn12222323n2n则:(3)(4)【评析】(1)中数列可看成一个等差数列与一个等比数列对应项相加而成,直接运用前n项和公式即可;(2)中数列可看成一个等差数列与一个等比数列对应项相乘而成,采用错位相减的方法,相减以前需要每一项乘以等比数列的公比,然后错位相减,还是利用等比数列的前n项和公式,注意错位后最后一项相减时出现的负号,这是极容易出错的地方;(3)(4)都是裂项相消,都与等差数列有关,(3

23、)中的形式更加常见一些,注意裂项后的结果要与裂项前一致,经常要乘一个系数(这个系数恰好是等差数列的公差的倒数)例2求下列数列的前n项和Sn(1)1,5,9,13,17,21,(1)n1(4n3);(2);(3)1,12,1222,122223,12222n1;【分析】对于一个数列来说,最重要的是通项公式,有了通项公式,就可以写出所有的项,就可以看出其与等差、等比数列的关系,从而利用等差、等比数列的前n项和得出结论解:(1)方法一:(当n是奇数时,1(5)9(13)17(21)(1)n1(4n3)(19174n3)51321(4n7) (当n是偶数时,1(5)9(13)17(21)(1)n1(4

24、n3)(19174n7)51321(4n3)方法二:(当n是奇数时,1(5)9(13)17(21)(1)n1(4n3)(15)(913)(1721)(4n114n7)(4n3)(当n是偶数时,1(5)9(13)17(21)(1)n1(4n3)(15)(913)(1721)(4n74n3)(2)此数列中的第n项则(2)此数列中的第n项则1(12)(1222)(12222n1)(211)(221)(231)(2n1)【评析】(1)中带有(1)n,需要讨论最后一项的正负,方法一是把正、负项分开,看成两个等差数列,方法二应该是多观察的结果,当都要对n加以讨论,(2)(3)都要先写出通项,然后每一项按照

25、通项的形式写出,很明显地看出方法例3 数列an中,a11,an12an2n(1)设,求证:数列bn是等差数列;(2)求数列an的前n项和Sn【分析】对于证明数列是等差、等比数列的问题,还是要应用定义解:(1)证明:,数列bn是首项、公差都为1的等差数列,即:bnn(2)由(1)中结果,设时,bnn,则:ann2n1Sn120221322423(n1)2n2n2n1【评析】证明数列是等差、等比数列时,如果可能应强调首项与公差,证明后,往往要用到整个数列,因此证明完后应把数列的通项写出,便于解决其他问题例4 已知:数列an中,a12,an14an3n1,nN*,(1)求证:数列ann是等比数列;(

26、2)求数列an的前n项和Sn;(3)证明不等式Sn14Sn,对任意nN*皆成立【分析】证明等比数列是应该应用定义,比较大小最有效的方法是作差(1)证明:由题设an14an3n1,得an1(n1)4(ann)( nN*),a1110,数列ann是首项为1,且公比为4的等比数列(2)解:由(1)可知ann4n1,于是数列an的通项公式为an4n1n则数列an的前n项和(3)证明:不等式Sn14Sn,对任意nN*皆成立练习53一、选择题:1数列的前n项之和Sn( )ABCD2若数列,它的前n项的积大于105,则正整数n的最小值是( )A12B11C10D83数列an的通项公式,若前n项和Sn3,则n

27、( )A3B4C15D164数列an的前n项和为Sn,若则S5等于( )A1BCD二、填空题:5若,且,则n_6若lgxlgx2lgx3lgxnn2n,则x_7数列1,(12),(1222),(12222n1)的前99项和是_8正项等比数列an满足:a2a41,S313,若bnlog3an,则数列bn的前10项的和是_三、解答题:9已知:等差数列an的前n项和为Sn,且S77,S1575,求数列的前n项和Tn10已知:等比数列an中,公比(1)用a1、q、n表示;(2)若成等差数列,求q的值;11已知:数列an中,a32,a51,数列是等差数列,(1)数列an的通项公式;(2)若,求数列bn的

28、前n项和Sn54 数学归纳法【知识要点】1数学归纳法是证明与正整数有关的命题的一种方法2数学归纳法证明包含两个步骤:(1)证明nn0时命题成立(n0是第一个使命题成立的正整数)(2)假设nk(kn0)时命题成立,由此证明nk1时命题也成立注意到,数学归纳法是一种自动证明的方法,其中(1)是基础,(2)是一种递推的结构,在证明nk1命题成立时,必须要用上nk成立时的归纳假设【复习要求】了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题【例题分析】例1 求证:【分析】等式的证明应该是利用数学归纳法常见的命题,注意从k到k1时书写一定要清晰,不能模棱两可,蒙混过关证明:(1)当n1时,左,则

29、当n1时原式成立(2)假设当nk时原式成立,即:则当nk1时,左故当nk1时原式也成立由(1)(2)知:当nN*时,原式均成立【评析】数学归纳法的关键在第二步,本题中利用归纳假设把k1个式子的和转化为两个式子的和是关键,后面的运算主要是提取公因式,最好把要变成的形式先写出来,这样就有了一个目标例2 求证:【分析】本题中n02,在利用归纳假设证明nk1不等式也成立时,我们可以利用不等式的其他证明方法证明:(1)当n2时,左右,则当n2时原式成立(2)假设当nk时原式成立,即:则,当nk1时,左故当nk1时原式也成立,由(1)(2)知:当nN*,n2时,原式均成立【评析】在第二步中,利用比较法得到

30、原式成立的结果,这种方法需要大家掌握例3 已知:正数数列an的前n项之和为Sn,且满足(1)求:a1,a2,a3,a4的值;(2)猜测数列an的通项公式,并用数学归纳法加以证明【分析】本题首先要求出前四项,应注意到正数数列这一条件,需要利用Sn与an的关系解:(1)(2)猜想:an2n1,证明:当n1时,猜想显然成立假设当nk时猜想成立,即:ak2k1,此时则当nk1时,整理得到:ak122ak1(2k1)(2k1)0,即:(ak12k1)(ak12k1)0,an0,ak12k12(k1)1,故当nk1时猜想也成立由知:an2n1(nN*)【评述】这种归纳、猜想、证明的题目应该是我们解决问题中

31、常见的,体现了由特殊到一般的过程,关键是归纳,前四项不要算错,否则就猜不出来了例4 已知:数列an、bn中,a12,b14,且an,bn,an1成等差数列,bn,an1,bn1成等比数列(nN*)求:a2,a3,a4及b2,b3,b4,猜测an,bn的通项公式,并证明你的结论【分析】利用等差中项与等比中项的条件,找到an、bn、an1、bn1的关系解:由条件得2bnanan1,由此可得;同理得到:,由此猜测ann(n1),bn(n1)2,下面用数学归纳法证明:ann(n1),bn(n1)2,当n1时,a1122,b1(11)24,猜想成立假设当nk时,猜想成立,即akk(k1),bk(k1)2

32、,则当nk1时,ak12bkak2(k1)2k(k1)(k1)(k2),,故当nk1时,猜想也成立由知ann(n1),bn(n1)2对一切正整数都成立练习541某个命题与正整数有关,若nk(kN)时,命题成立,那么可推出当nk1时,该命题也成立现已知当n5时,该命题不成立,那么可以推得( )A当n6时,该命题不成立B当n6时,该命题成立C当n4时,该命题不成立D当n4时,该命题成立2平面上有n条直线,它们任意两条不平行,任意三条不共点,若k条这样的直线把平面分成f(k)个区域,则f(k1)f(k)( )Ak1BkCk1D2k3利用数学归纳法证明不等式的过程中,从nk到nk1时,不等式的左边添加

33、的代数式是_4观察下列式子:,则可以猜想的结论为:_.5求证:122538n(3n1)n2(n1)6求证:7求证:4n15n1能被9整除8已知:递增数列an满足:a11,2an1anan2(nN*),且a1、a2、a4成等比数列(1)求数列an的通项公式an;(2)若数列bn满足:bn1(n2)bn3(nN*),且b11,用数学归纳法证明:bnan55 数列综合问题【知识要点】1灵活运用等差数列、等比数列的两个公式及其性质来解决综合问题,2能解决简单的由等差数列、等比数列形成的新数列的问题,3能够利用等差数列、等比数列的定义来确定所给数列是等差数列、等比数列【复习要求】通过简单综合问题的解决,

34、加深对等差数列、等比数列中,定义、通项、性质、前n项和的认识加深数列是特殊的函数的认识,符合高中阶段知识是以函数为主线的展开【例题分析】例1 完成下列各题:(1)数列an中,若,则a5_(2)数列an中,若a12,an1ann1,则通项an_【分析】叠加的方法应该是解决数列的通项以及求和问题中常见的方法解:(1),(2)an1ann1,an1ann1利用叠加法,有:a2a111a3a221a4a331整理【评析】叠加时一定要注意首、尾项的变化,尤其是符号例2已知:数列an是一个等差数列,且a21,a55(1)求an的通项an;(2)求an前n项和Sn的最大值【分析】应该是等差数列中的基本问题,

35、还是利用两个基本公式解决问题解:(1)设an的公差为d,由已知条件,解出a13,d2ana1(n1)d2n5;(2)n2时,Sn取到最大值4【评析】对于等差数列的前n项和的最值问题,看成二次函数的最值问题应该是基本方法例3 已知:数列an中,a11,设,求数列bn的前n项和Sn【分析】注意观察所给数列变形后与等差、等比数列有哪些联系,这个联系一定要找到,而且一定有联系,显然本题中是等差数列解:由题知:数列an中an0,数列是首项为1,公差为2的等差数列,,,【评析】对于开方的问题一定要考虑正、负,而裂项求和(也可以看作分母的有理化)在前一节中也比较多地提到例4已知:等差数列an的各项均为正数,

36、a13,等比数列bn中,b11且b2(a1a2)64,b3(a1a2a3)960求数列an、bn的通项公式【分析】还是方程思想在数列中的体现,利用所给条件,列出方程得到公差与公比,从而得到通项公式解:(1)设等差数列an的公差为d,等比数列bn的公比为q,等差数列an的各项均为正数,d0,则等差数列an中,a1a22a1d6d,a1a2a33a13d93d,等比数列bn中,b2b1qq,b3q2,b2(a1a2)64,b3(a1a2a3)960,得d2或,d0,d2,此时q8,an2n1,bn8n1;【评析】注意题目中所给的条件如何运用,例如:等差数列an的各项均为正数,隐含着给出d0,从而对

37、最后的结果产生影响例5 完成下列各题:(1)若一个直角三角形三边长成等比数列,则( )A三边长之比345B三边长之比为C较大锐角的正弦为D较小锐角的正弦为(2)ABC中,如果角A、B、C成等差数列,边a、b、c成等比数列,那么ABC一定是( )A直角三角形B等腰直角三角形C等边三角形D钝角三角形【分析】解决三角形中的问题是一定要用到正弦定理、余弦定理,三角形的内角和等于p恰好使等差数列的条件得以运用,从而得到角B为的结论,再利用余弦定理找到边之间的关系,应该是数列与三角综合问题中常见的方法解:(1)由题中条件可设三边为a、aq、aq2(q1),由勾股定理:a2a2q2a2q4,则,设较小锐角为

38、A,其对边为a,则选D(2)ABC中,角A、B、C成等差数列,由余弦定理,得a2c2b2ac,三条边a、b、c成等比数列,b2ac,a2c22ac0,即ac,ABC一定是等边三角形选C【评析】解决与三角形有关的问题时,一定要想到正弦定理、余弦定理,与数列综合时,应把角的关系转化为边的关系,因为边成等比数列,所以用边判断三角形形状应该是正确的选择例6 已知数列an的前n项和Snnpan,且a1a2,(1)确定p的值;(2)判断数列an是否为等差数列【分析】本题中存在递推的关系,解决时还是通过赋值,找到结论,赋值时要多赋几个,以免出现冲突解:(1)Snnpan,S1a1pa1,a10或p1,S2a

39、1a22pa2,当p1时,有a1a22a2a1a2与已知矛盾,p1,a10(且a20),S2a1a22pa2,a20,;(2)由(1)中结论:,即:2Snnan,则2Sn1(n1)an1,两式相减:2(Sn1Sn)2an1(n1)an1nan ,同理得到:2annan(n1)an1(n2) ,得2an12an(n1)an12nan(n1)an1(n2),整理得到2(n1)an(n1)an1(n1)an1(n2),n2,2anan1an1,即:an1ananan1,数列an是等差数列【评析】(1)中对n1得到的结论要加以验证,这也是为什么要多赋几个值的原因,(2)中开始由Sn求an的方法应该掌握

40、,而后面得到结论的方法并不多见,实际上是在找数列中连续三项存在的关系,最后得到的也是等差数列的定义,即:每一项与其前一项的差都相等,这与anan1是常数略有不同,希望大家了解例7在数列an中,Sn14an2,且a11,(1)若bnan12an,求证:数列bn是等比数列;(2)若,求证:数列cn是等差数列;(3)求数列an的通项公式an及前n项和公式Sn【分析】还是要应用定义来证明等差、等比数列解:(1)Sn14an2,Sn4an12(n2),an1Sn1Sn4an4an1,an12an2(an2an1),即bn2bn1,Sn14an2,a11,S2a1a24a12,a25,b1a22a13,数

41、列bn是首项为3,公比为2的等比数列,即:bn32n1;(2)bn32n1,数列cn是首项为,公差为等差数列,即(3)Sn(3n4)2n12【评析】前两问实际上是第三问的铺垫,证明等差、等比数列后,要写出通项公式,为下一步的问题作准备错位相减时要注意计算,方法再好,结果是错的,也不能说明你的水平练习55一、选择题:1已知an为等差数列,bn为正项等比数列,公比q1,若a1b1,a11b11,则( )Aa6b6Ba6b6Ca6b6Da6b6或a6b62设数列an的前n项和Sn,且an2n1,则数列的前11项为( )A45B50C55D663已知等比数列(an)中a21,则其前3项的和S3的取值范

42、围是( )A(,0)(1,)B(,1C(,13,)D3,)4ABC中,tanA是等差数列an的公差,且a31,a71,tanB是等比数列bn的公比,且b39,则这个三角形是( )A钝角三角形B直角三角形C锐角三角形D等腰三角形二、填空题:5若等差数列an中,a1a35,a8a1019,则前10项和S10_6设等比数列an的公比q2,前n项和为Sn,则_7等差数列an中,a10,S4S9,当Sn取得最大值时,n_8数列an中,若a11,则通项公式an_三、解答题:9已知:递增等比数列an满足a2a3a428,且a32是a2、a4的等差中项求an的通项公式an;10已知数列xn的首项x13,xn2

43、npnq,且x1,x4,x5成等差数列,(1)求:常数p,q的值;(2)求:数列xn的前n项的和Sn的公式11已知an是正数组成的数列,a11,且点在函数yx21的图象上(1)求:数列an的通项公式;(2)若数列bn满足b11,bn1bn2an,求证:bnbn2bn12习题5一、选择题:1等差数列an的前n项和为Sn,若a21,a33,则S4( )A12B10C8D62等比数列an的首项为a1,公比为q,则“a10且0q1”是“对于任意nN*都有an1an”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分又不必要条件3等差数列an中,a1a2a3a50200,a51a52a10

44、02700,则a1( )A20B20.5C21.5D22.54若数列an的前n项和Sn5n2n,则a6a7a8a9a10( )A250B270C370D4905将n2个正整数1,2,3,n2填入nn个方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n阶幻方如图,就是一个3阶幻方定义f(n)为n阶幻方每条对角线上数的和,例如f(3)15,那么f(4)的值为( )A35B34C33D32816357492二、填空题:6等差数列an中,a53,若其前5项和S510,则其公差d_7数列an中,a13,a26,若an2an1an,则a6_,a2009_8设f(n)123n,nN*,则f

45、(25)_9若数列an满足,则a10等于_10数列an中,如果存在非零的常数T,使得anTan对于任意正整数n均成立,那么就称数列an为周期数列,其中T 叫做数列an的周期已知数列xn满足xn2xn1xn(xN*),若x11,x2a(a1,a0),当数列xn的周期为3时,则数列xn的前2009项的和S2009为_三、解答题:11已知数列an是等差数列,a318,a612(1)求数列an的通项公式;(2)数列an的前多少项和最大,最大值是多少?12已知数列an的各项均为正数,Sn为其前n项和,且Sn2an2(1)求数列an的通项公式;(2)设数列bn的前n项和为Tn,且,求证:对任意正整数n,总

46、有Tn2;13已知an是等差数列,bn是各项都为正数的等比数列,且a1b11,a3b521,a5b313(1)求an,bn的通项公式;(2)求数列的前n项和Sn14如果有穷数列a1,a2,a3,am(m为正整数)满足条件a1am,a2am1,ama1,即aiami1(i1,2,m),我们称其为“对称数列”例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”(1)设bn是7项的“对称数列”,其中b1,b2,b3,b4是等差数列,且b12,b411依次写出bn的每一项;(2)设cn是49项的“对称数列”,其中c25,c26,c49是首项为1,公比为2的等比数列,求cn各项的和S

47、;(3)设dn是100项的“对称数列”,其中d51,d52,d100是首项为2,公差为3的等差数列求dn前n项的和Sn(n1,2,100)专题05 数列参考答案练习51一、选择题:1B 2A 3C 4D二、填空题:5,均可;61、3、5、7,an2n1; 7; 8三、解答题9解:;,猜想:10解:由题知:数列的前50项中有:1个1、2个2、3个3、9个9,此时共有123945项,还有5个10练习52一、选择题:1D 2A 3D 4B二、填空题:540、16、0、;6127;712;8512三、解答题9解:由题知,前100个自然数中,除以7余2的所有数构成首项为2,公差为7的等差数列an,即:a

48、n7n5,前100个自然数中最后一个除以7余2是:a1493,则前100个自然数中,除以7余2的所有数的和10解:设这三个数为2d,2,2d(d0),由题意,当2d为等比中项时,有(2d)22(2d)d6,这三个数:4,2,8;当2为等比中项时,有22(2d)(2d)d0(舍),无解;当2d为等比中项时,有(2d)22(2d)d6,这三个数:8,2,4;综上所述,这三个数为4,2,8或8,2,411解:数列an为等比数列,an2qn1,数列an1也是等比数列,(an11)2(an1)(an21)即an122an1anan2anan2等比数列中an12anan2,anan22an1则an(1q2

49、2q)0q1,即an2,所以Sn2n练习53一、选择题:1A 2B 3C 4B二、填空题:56 6100 72100101 825三、解答题:910解:(1)数列an是等比数列,而是以为首项,为公比的等比数列,(2)成等差数列,3a12、a12q2、a12q4成等差数列,2a12q23a12a12q4,等比数列an中a10,q42q230,q23,11解:(1)数列是等差数列,即:(2)由(1)知:练习541C 2A 3 45证明:(1)当n1时,左1212(11)右,则当n1时原式成立,(2)假设当nk时原式成立,即:122538k(3k1)k2(k1),则当nk1时,左122538k(3k

50、1)(k1)(3k2)k2(k1)(k1)(3k2)(k1)(k23k2)(k1)2(k2)右,故当nk1时原式也成立则由(1)(2)知:122538n(3n1)n2(n1)6证明:(1)当n1时,左右,则当n1时原式成立,(2)假设当nk时原式成立,即:则当nk1时,左右故当nk1时原式也成立则由(1)(2)知7证明:(1)当n1时,41151118,则当n1时命题成立,(2)假设当nk时原式成立,即:4k15k1能被9整除,则当nk1时,4k115(k1)14(4k15k1)45k18,45、18能被9整除,4k115(k1)1能被9整除,故当nk1时命题也成立则由(1)(2)知:4n15

51、n1能被9整除8解:(1)2an1anan2,数列an为等差数列,设公差为d(d0)a1、a2、a4成等比数列,(2)即证bnn(nN*),当n1时,b11,原不等式成立;假设nk时原不等式成立,即bkk(kN*)则当nk1时,当nk1时原不等式也成立由可知bnn(nN*)练习55一、选择题:1B 2D 3C 4A二、填空题:560; 6 76或7; 8三、解答题:9答:an22n12n10略解:(1)p1,q1(2)由(1)知:xn2nn,11解:(1)由已知得an1an1,即an是首项、公差都为1的等差数列则an1n1n(2)由(1)知,ann,从而bn1bn2n,bn1bn2n,所以,b

52、n(bnbn1)(bn1bn2)(b2b1)b12n12n2212n1,则:bnbn2bn12(2n1)(2n21)(2n11)2(22n22n22n1)(22n222n11)2n0,习题5一、选择题1C 2A 3B 4C 5B二、填空题:6; 73,6; 8528; 9 101340三、解答题:11解:(1)设:等差数列an的公差为d,则,解得,数列an的通项:ana1(n1)d242n(2)数列an的前n项和则:当n11或n12时,Sn取得最大值,且最大值为13212解:(1)当n1时,a1S12a12a12,当n2时,anSnSn12an22an12an2an1,S2a1a22a22a2

53、4,则:an42n22n(n2),由得:an2n,(2)当n1时,T112,当n2时,所以13解:(1)设an的公差为d,bn的公比为q,则依题意有q0由得,则:an1(n1)d2n1,bnqn12n1(2)得14解:(1)设数列bn的公差为d,则b4b13d23d11,解得d3,数列bn为2,5,8,11,8,5,2;(2)Sc1c2c492(c25c26c49)c252(1222224)12(2251)1226367108861;(3)d512,d10023(501)149,由题意得d1,d2,d50是首项为149,公差为3的等差数列当n50时,当51n100时,Snd1d2dnS50(d51d52dn)综上所述,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3