ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:91KB ,
资源ID:136991      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-136991-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2013届高考数学三维设计课后练习(人教A版 ):第三章第七节 正弦定理和余弦定理.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2013届高考数学三维设计课后练习(人教A版 ):第三章第七节 正弦定理和余弦定理.doc

1、一、选择题1在ABC中,a、b分别是角A、B所对的边,条件“acos B”成立的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件解析:abAcos B.答案:C2在ABC中,角A、B、C的对边分别为a、b、c,且a,b(0),A45,则满足此条件的三角形个数是()A0 B1C2 D无数个解析:直接根据正弦定理可得,可得sin B1,没有意义,故满足条件的三角形的个数为0.答案:A3已知圆的半径为4,a、b、c为该圆的内接三角形的三边,若abc16,则三角形的面积为()A2 B8C. D.解析:2R8,sin C.SABCabsin Cabc16.答案:C4在ABC中,角

2、A,B,C所对的边长分别为a,b,c.若C120,ca,则()Aab BabCab Da与b的大小关系不能确定解析:法一由余弦定理得2a2a2b22abcos 120,b2aba20,即210,1,故b0,ab.法三:由ca.sin Csin Asin 120sin A.sin A.又AB60,A30.AB.答案:A5ABC中,AB,AC1,B30,则ABC的面积等于()A. B.C.或 D.或解析:,sin Csin 30.C60或C120.当C60时,A90,SABC1,当C120时,A30,SABC1sin 30.即ABC的面积为或.答案:D二、填空题6(2011福建高考)若ABC的面积

3、为,BC2,C60,则边AB的长度等于_解析:由正弦定理可知:SABCBCCAsin60 ,又因为BC2,所以CA2,即BCCA,又ACB60,所以三角形ABC是正三角形,所以AB2.答案:27(2012吉林一模)在锐角ABC中,a,b,c分别为角A,B,C所对的边,且a2csin A,角C_.解析:根据正弦定理,由a2csin A,得,sin C,而角C是锐角角C.答案:三、解答题8在ABC中,a、b、c分别为A、B、C的对边,B,b,ac4,求a.解:由余弦定理b2a2c22accos Ba2c22accosa2c2ac(ac)2ac.又ac4,b,ac3.联立解得a1或a3.9(2012

4、茂名一模)在ABC中,a、b、c分别是角A、B、C的对边,若tan A3,cos C.(1)求角B的大小(2)若c4,求ABC的面积解:(1)cos C,sin C,tan C2.又tan Btan(AC)1且B,B.(2)由正弦定理得b,由sin Asin(BC)sin 得sin A,ABC的面积SABCbcsin A6.10(2012茂名期末)在ABC中,内角A,B,C所对的边长分别是a,b,c.(1)若c2,C,且ABC的面积为,求a,b的值;(2)若sin Csin(BA)sin 2A,试判断ABC的形状解:(1)c2,C,由余弦定理c2a2b22abcos C得a2b2ab4.又ABC的面积为,absin C,ab4.联立方程组解得a2,b2.(2)由sin Csin(BA)sin 2A,得sin(AB)sin(BA)2sin Acos A,即2sin Bcos A2sin Acos A,cos A(sin Asin B)0,cos A0或sin Asin B0,当cos A0时,0A,A,ABC为直角三角形;当sin Asin B0时,得sin Bsin A,由正弦定理得ab,即ABC为等腰三角形ABC为等腰三角形或直角三角形

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3