ImageVerifierCode 换一换
格式:PPT , 页数:35 ,大小:964KB ,
资源ID:135133      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-135133-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021-2022学年数学北师大版必修一练习课件:2-2-2-1 函 数 概 念 .ppt)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021-2022学年数学北师大版必修一练习课件:2-2-2-1 函 数 概 念 .ppt

1、七 函 数 概 念【基础全面练】(15 分钟 30 分)1对于集合 Ax|0 x2,By|0y3,则由下列图形给出的对应关系中,能构成从 A 到 B 为函数关系的是()【解析】选 D.A 中有一部分 x 值没有与之对应的 y 值;B 中一对多的关系不是函数关系;C 中当 x1 时对应两个不同的 y 值,不能构成函数;D 中对应关系符合函数定义2下列各组函数是同一函数的是()f(x)2x3 与 g(x)x2x;f(x)x 与 g(x)x1;f(x)|x|与 g(x)x2;f(x)x22x1 与 g(t)t22t1.A B C D【解析】选 C.f(x)2x3|x|2x 与 g(x)x2x 的对应

2、关系和值域都不同,故不是同一函数g(x)x1 与 f(x)x 的对应关系不同,故不是同一函数f(x)|x|与 g(x)x2|x|定义域都为 R,对应关系相同,故是同一函数f(x)x22x1 与 g(t)t22t1 的定义域都是 R,对应关系也相同,而与用什么字母表示无关,故是同一函数由上可知是同一函数的是.3yf(x)的图像如图,则函数的定义域是()A.5,6)B5,02,6C5,0)2,6)D5,02,6)【解析】选 D.由图像结合函数定义域的定义知,x5,02,6).4已知函数 f(x)的图象如图所示,则 f(5)_,f(f(2)_【解析】由题图可知 f(5)32,f(2)0,f(0)4,

3、故 f(f(2)4.答案:32 4【补偿训练】函数 y3|xx2的定义域为_【解析】由函数的解析式可得3|x 0,x20,解得3x3,x2,据此可得函数的定义域为x|3x2 或2x3答案:x|3x2 或2x35已知函数 f(x)x2 11x的定义域为集合 A,g(x)3x 的定义域为集合 B,CxR|xa1(1)求集合 A,(RA)B.(2)若 ACR,求实数 a 的取值范围【解析】(1)要使函数 f(x)有意义,则x20,1x0,解得2x1,所以 Ax|2x1,即 RAx|x2 或 x1,要使函数 g(x)有意义,则 3x0,解得 x3,即 Bx|x3,所以(RA)Bx|x2 或 1x3(2

4、)因为 ACR,所以a2,a11,解得2a0,所以实数 a 的取值范围为2,0).【补偿训练】已知函数 f(x)x1x.(1)求 f(x)的定义域(2)求 f(1),f(2)的值(3)当 a1 时,求 f(a1)的值.【解析】(1)要使函数 f(x)有意义,必须使 x0,所以 f(x)的定义域是(,0)(0,).(2)f(1)1 11 2,f(2)212 52.(3)当 a1 时,a10,所以 f(a1)a1 1a1.【综合突破练】(20 分钟 40 分)一、选择题(每小题 5 分,共 20 分)1下列函数的定义域和值域相同的是()Ayx22 019 Byx11Cyx2 019 Dy|x|【解

5、析】选 C.函数 yx22 019 的定义域为 R,值域为2 019,),函数 yx11 的定义域为(,0)(0,),值域为(,1)(1,),函数 yx2 019 的定义域和值域都是 R,函数 y|x|的定义域为 R,值域为0,).2若两个函数的对应关系相同,值域也相同,但定义域不同,则称这两个函数为同族函数那么与函数 yx2,x1,0,1,2为同族函数的个数有()A5 个 B6 个 C7 个 D8 个【解析】选 D.由题意知同族函数是只有定义域不同的函数,函数解析式为 yx2,值域为0,1,4时,定义域中,0 是肯定有的,1,至少含一个,2,至少含一个它的定义域可以是0,1,2,0,1,2,

6、0,1,2,0,1,2,0,1,2,2,0,1,2,2,0,1,1,2,0,1,1,2,2,共有 8 种不同的情况3设集合 Mx|(x1)(x3)0,Nyyy3 0,函数 f()x的定义域为 M,值域为 N,则函数 f()x的图像可以是()【解析】选 B.Mx|(x1)(x3)01,3,Ny|y(y3)00,3,A 项定义域为1,0,D 项值域是0,2,C 项对任一 x1,3)都有两个 y 与之对应,都不符【补偿训练】函数 g(x)2xx1 的最大值为()A178 B2 C178 D94【解析】选 C.函数 g(x)2xx1 x1,设x1 t,t0,则 xt21,则 h()t2t21t2t2t

7、2,对称轴为 t14,所以 h()t在0,14上递增,在14,上递减,所以 h()tmaxh14214214 2178,所以 g(x)的最大值为178.4高斯是德国著名的数学家,近代数学家奠基者之一,享有“数学王子”的称号,用其名字命名了“高斯函数”设 xR,用 x表示不超过 x 的最大整数,则 y x称为高斯函数,例如:2.13,3.13,已知函数 f(x)x2x1,x0,1,则函数 yf(x)的值域是()A1,2 B(1,2)C(0,1)D 2【解析】选 A.当 x0,1时,f(x)x2x1 1 1x1 32,2,当 f(x)32,2时,yf(x)1;当 f(x)2 时,yf(x)2.所以

8、函数 yf(x)的值域是1,2.二、填空题(每小题 5 分,共 10 分)5若 g(x2)2x3,则 g(3)的值是_【解析】方法一:因为 g(x2)2x3,所以 g(3)g(12)2135.方法二:因为 g(x2)2x3,令 x2txt2,所以 g(t)2(t2)32t1,g(3)2315.答案:56(1)函数 y2x1,x(1,1的值域是_(2)函数 yx2x2,xR 的值域是_【解析】(1)因为1x1,所以22x2,12x13,所以函数 y2x1,x(1,1的值域是(1,3.(2)用配方法得:y x2x2x12274 74,函数 yx2x2,xR 的值域是74,.答案:(1)(1,3(2

9、)74,【补偿训练】函数 yx41x 的值域为_【解析】令1x t,则 t0,所以 1xt2,所以 x1t2,所以 y1t24tt24t1(t2)25,t0,),所以当 t2,即 x3 时,y 取最大值 5,所以函数 yx41x 的值域为(,5.答案:(,5三、解答题7(10 分)(1)已知函数 yf(x)的定义域为2,3,求函数 yf(2x3)的定义域(2)已知函数 yf(x1)的定义域为2,3,求函数 yf2x22的定义域【解析】(1)因为函数 yf(x)的定义域为2,3,即 x2,3,函数 yf(2x3)中 2x3 的范围与函数 yf(x)中 x 的范围相同,所以22x33,解得12 x

10、3,所以函数 yf(2x3)的定义域为12,3.(2)yf(x1)的定义域为2,3,所以2x3,所以1x14,令 tx1,所以1t4.所以 f(t)的定义域为1,4,即 f(x)的定义域为1,4.要使 f2x22有意义,需使12x224,所以 3 x 22或 22x 3.所以函数 yf2x22的定义域为x 3x 22 或22 x 3.【补偿训练】已知 f(x)x21x2,xR.(1)计算 f(a)f1a的值(2)计算 f(1)f(2)f12f(3)f13f(4)f14的值【解析】(1)由于 f(a)a21a2,f1a11a2,所以 f(a)f1a1.(2)方法一:因为 f(1)12112 12,f(2)22122 45,f121221122 15,f(3)32132 910,f131321132 110,f(4)42142 1617,f141421142 117,所以 f(1)f(2)f12f(3)f13f(4)f1412 45 15 910 110 1617 117 72.方法二:由(1)知,f(a)f1a1,则 f(2)f12f(3)f13f(4)f141,即f(2)f12f(3)f13f(4)f(14)3,而 f(1)12,所以 f(1)f(2)f12f(3)f13f(4)f1472.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3