收藏 分享(赏)

2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC

上传人:高**** 文档编号:1342628 上传时间:2024-06-06 格式:DOC 页数:31 大小:617.50KB
下载 相关 举报
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第1页
第1页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第2页
第2页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第3页
第3页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第4页
第4页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第5页
第5页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第6页
第6页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第7页
第7页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第8页
第8页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第9页
第9页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第10页
第10页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第11页
第11页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第12页
第12页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第13页
第13页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第14页
第14页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第15页
第15页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第16页
第16页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第17页
第17页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第18页
第18页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第19页
第19页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第20页
第20页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第21页
第21页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第22页
第22页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第23页
第23页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第24页
第24页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第25页
第25页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第26页
第26页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第27页
第27页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第28页
第28页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第29页
第29页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第30页
第30页 / 共31页
2018版高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 K单元 概率(理科2013年) WORD版含答案.DOC_第31页
第31页 / 共31页
亲,该文档总共31页,全部预览完了,如果喜欢就下载吧!
资源描述

1、K单元 概率K1随事件的概率16I1,K1,K2,K6 下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天图16(1)求此人到达当日空气重度污染的概率;(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)16解:设Ai表示事件“此人于3月i日到达该市”(i1,2,13)根据题意,P(Ai),且AiAj(ij)(1)设B为事件“此人到达当日空气重度污染”,则BA5A8.所

2、以P(B)P(A5A8)P(A5)P(A8).(2)由题意可知,X的所有可能取值为0,1,2,且P(X1)P(A3A6A7A11)P(A3)P(A6)P(A7)P(A11),P(X2)P(A1A2A12A13)P(A1)P(A2)P(A12)P(A13),P(X0)1P(X1)P(X2).所以X的分布列为X012P故X的期望E(X)012.(3)从3月5日开始连续三天的空气质量指数方差最大K2古典概型9K2 如图12所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)()图12A. B. C. D.9B

3、 X的取值为0,1,2,3且P(X0),P(X1),P(X2),P(X3),故E(X)0123,选B.7K2 现有某类病毒记作XmYn,其中正整数m,n(m7,n9)可以任意选取,则m,n都取到奇数的概率为_7. 基本事件共有7963种,m可以取1,3,5,7,n可以取1,3,5,7,9.所以m,n都取到奇数共有20种,故所求概率为.16I1,K1,K2,K6 下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天图16(1)求此人到达当日空气重度污染的概率;(

4、2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)16解:设Ai表示事件“此人于3月i日到达该市”(i1,2,13)根据题意,P(Ai),且AiAj(ij)(1)设B为事件“此人到达当日空气重度污染”,则BA5A8.所以P(B)P(A5A8)P(A5)P(A8).(2)由题意可知,X的所有可能取值为0,1,2,且P(X1)P(A3A6A7A11)P(A3)P(A6)P(A7)P(A11),P(X2)P(A1A2A12A13)P(A1)P(A2)P(A12)P(A13),P(X0)1P(X1)P(X2).所

5、以X的分布列为X012P故X的期望E(X)012.(3)从3月5日开始连续三天的空气质量指数方差最大16K2,K6 一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同)(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望16解:设“取出的4张卡片中,含有编号为3的卡片”为事件A,则P(A).所以,取出的4张卡片中,含有编号为3的卡片的概率为.(2)随机变量X的所有可能取值为1,2,3,4.P(X1),P

6、(X2),P(X3),P(X4).所以随机变量X的分布列是X1234P随机变量X的数学期望E(X)1234.14K2,J2 从n个正整数1,2,3,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n_148 和为5的只有两种情况,14,23,故C28n8.18K2、K4、K5,K8 某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余

7、情况无奖且每次摸奖最多只能获得一个奖级(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X的分布列与期望E(X)18解:设Ai表示摸到i个红球,Bj表示摸到j个蓝球,则Ai(i0,1,2,3)与Bj(j0,1)独立(1)恰好摸到1个红球的概率为P(A1).(2)X的所有可能值为0,10,50,200,且P(X200)P(A3B1)P(A3)P(B1),P(X50)P(A3B0)P(A3)P(B0),P(X10)P(A2B1)P(A2)P(B1),P(X0)1.综上知X的分布列为X01050200P从而有E(X)010502004(元)K3几何概型11K3 利用计算机产生

8、01之间的均匀随机数a,则事件“3a10”发生的概率为_11. a1,概率P.14E4、K3 在区间上随机取一个数x,使得|x1|x2|1成立的概率为_14. 当x2时,不等式化为x1x21,此时恒成立,|x1|x2|1的解集为.在上使不等式有解的区间为,由几何概型的概率公式得P.5K3 如图11,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常)若在该矩形区域内随机地选一地点,则该地点无信号的概率是()图11A1 B.1C2 D.5A 阅读题目可知,满足几何概型的概率特点,利用几何概型的概率公

9、式可知:P1.9K3 节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是()A. B.C. D.9C 设第一串彩灯在通电后第x秒闪亮,第二串彩灯在通电后第y秒闪亮,由题意满足条件的关系式为2xy2.根据几何概型可知,事件全体的测度(面积)为16平方单位,而满足条件的事件测度(阴影部分面积)为12平方单位,故概率为.K4互斥事件有一个发生的概率19K4,K6 一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品

10、中优质品的件数记为n.如果n3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n4.再从这批产品中任取1件作检验;若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为,且各件产品是否为优质品相互独立(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望19解:(1)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品都

11、是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A(A1B1)(A2B2),且A1B1与 A2B2互斥,所以P(A)P(A1B1)P(A2B2)P(A1)P(B1|A1)P(A2)P(B2|A2).(2)X可能的取值为400,500,800,并且P(X400)1,P(X500),P(X800).所以X的分布列为X400500800PE(X)400500800506.25.18K2、K4、K5,K8 某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个

12、球根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X的分布列与期望E(X)18解:设Ai表示摸到i个红球,Bj表示摸到j个蓝球,则Ai(i0,1,2,3)与Bj(j0,1)独立(1)恰好摸到1个红球的概率为P(A1).(2)X的所有可能值为0,10,50,200,且P(X200)P(A3B1)P(A3)P(B1),P(X50)P(A3B0)P(A3)P(B0),P(X10)P(A2B

13、1)P(A2)P(B1),P(X0)1.综上知X的分布列为X01050200P从而有E(X)010502004(元)K5相互对立事件同时发生的概率18K2、K4、K5,K8 某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X的分布列

14、与期望E(X)18解:设Ai表示摸到i个红球,Bj表示摸到j个蓝球,则Ai(i0,1,2,3)与Bj(j0,1)独立(1)恰好摸到1个红球的概率为P(A1).(2)X的所有可能值为0,10,50,200,且P(X200)P(A3B1)P(A3)P(B1),P(X50)P(A3B0)P(A3)P(B0),P(X10)P(A2B1)P(A2)P(B1),P(X0)1.综上知X的分布列为X01050200P从而有E(X)010502004(元)K6离散型随机变量及其分布列19K4,K6 一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n3,再从

15、这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n4.再从这批产品中任取1件作检验;若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为,且各件产品是否为优质品相互独立(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望19解:(1)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品都是优质品为事件B1,第二次取出的1件

16、产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A(A1B1)(A2B2),且A1B1与 A2B2互斥,所以P(A)P(A1B1)P(A2B2)P(A1)P(B1|A1)P(A2)P(B2|A2).(2)X可能的取值为400,500,800,并且P(X400)1,P(X500),P(X800).所以X的分布列为X400500800PE(X)400500800506.25.16K6,K8 某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结

17、束后凭分数兑换奖品(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?16解:方法一:(1)由已知得,小明中奖的概率为,小红中奖的概率为,且两人中奖与否互不影响记“这2人的累计得分X3”的事件为A,则事件A的对立事件为“X5”,因为P(X5),所以P(A)1P(X5),即这两人的累计得分X3的概率为.(2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得

18、分的数学期望为E(3X2)由已知可得,X1B,X2B,所以E(X1)2,E(X2)2,从而E(2X1)2E(X1),E(3X2)3E(X2).因为E(2X1)E(3X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大方法二:(1)由已知得,小明中奖的概率为,小红中奖的概率为,且两人中奖与否互不影响记“这两人的累计得分X3”的事件为A,则事件A包含有“X0”“X2”“X3”三个两两互斥的事件,因为P(X0),P(X2),P(X3),所以P(A)P(X0)P(X2)P(X3),即这两人的累计得分X3的概率为.(2)设小明、小红都选择方案甲所获得的累计得分为X1,都选择方案乙所获得的累计得

19、分为X2,则X1,X2的分布列如下:X1024PX2036P所以E(X1)024,E(X2)036.因为E(X1)E(X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大4K6 已知离散型随机变量X的分布列为X123P则X的数学期望E(X)()A. B2C. D34A E(X)123,选A.18K6 小波以游戏方式决定是参加学校合唱团还是参加学校排球队游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6,A7,A8(如图15)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X.若X0就参加学校合唱团,否则就参加学校排球队(1)求小波参加学校合唱团的概率;(2

20、)求X的分布列和数学期望图15解:(1)从8个点中任取两点为向量终点的不同取法共有C28种,X0时,两向量夹角为直角共有8种情形;所以小波参加学校合唱团的概率为P(X0).(2)两向量数量积X的所有可能取值为2,1,0,1,X2时,有2种情形;X1时,有8种情形;X1时,有10种情形所以X的分布列为X2101PEX(2)(1)01.16I1,K1,K2,K6 下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天图16(1)求此人到达当日空气重度污染的概率;(2

21、)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)16解:设Ai表示事件“此人于3月i日到达该市”(i1,2,13)根据题意,P(Ai),且AiAj(ij)(1)设B为事件“此人到达当日空气重度污染”,则BA5A8.所以P(B)P(A5A8)P(A5)P(A8).(2)由题意可知,X的所有可能取值为0,1,2,且P(X1)P(A3A6A7A11)P(A3)P(A6)P(A7)P(A11),P(X2)P(A1A2A12A13)P(A1)P(A2)P(A12)P(A13),P(X0)1P(X1)P(X2).所以

22、X的分布列为X012P故X的期望E(X)012.(3)从3月5日开始连续三天的空气质量指数方差最大19K6、K7 甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立(1)分别求甲队以30,31,32胜利的概率;(2)若比赛结果为30或31,则胜利方得3分、对方得0分;若比赛结果为32,则胜利方得2分、对方得1分求乙队得分X的分布列及数学期望19解:(1)记“甲队以30胜利”为事件A1,“甲队以31胜利”为事件A2,“甲队以32胜利”为事件A3,由题意,各局比赛结果相互独立,故P(A1)3,P(

23、A2)C21,P(A3)C212.所以,甲队以30胜利、以31胜利的概率都为,以32胜利的概率为.(2)设“乙队以32胜利”为事件A4,由题意,各局比赛结果相互独立,所以P(A4)C1221,由题意,随机变量X的所有可能的取值为0,1,2,3.根据事件的互斥性得P(X0)P(A1A2)P(A1)P(A2).又P(X1)P(A3).P(X2)P(A4),P(X3)1P(X0)P(X1)P(X2),故X的分布列为X0123P所以E(X)0123.19K6 在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1

24、号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列及数学期望19解:(1)设A表示事件“观众甲选中3号歌手”,B表示事件“观众乙选中3号歌手,”则P(A),P(B).事件A与B相互独立,观众甲选中3号歌手且观众乙未选中3号歌手的概率为P(AB)P(A)P(B)P(A).或P(AB ).(2)设C表示事件“观众丙选中3号歌手”则P(C).X可能的取值为0,1,2,3,且取这些值的概率分别为P(X0)P(A

25、 B C).P(X1)P(AB C)P(ABC)P(A BC),P(X2)P(ABC)P(ABC)P(ABC),P(X3)P(ABC).X的分布列为X0123PX的数学期望EX0123.18L1,K6 某算法的程序框图如图16所示,其中输入的变量x在1,2,3,24这24个整数中等可能随机产生图16(1)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i1,2,3)的频数以下是甲、乙所作频数统计表的部分数据甲的频数统计表(部分)运行次数n输出y的值为1的频数输出y的值为2

26、的频数输出y的值为3的频数30146102 1001 027376697乙的频数统计表(部分)运行次数n输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数30121172 1001 051696353当n2 100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大;(3)按程序框图正确编写的程序运行3次,求输出y的值为2的次数的分布列及数学期望18解:(1)变量x是在1,2,3,24这24个整数中随机产生的一个数,共有24种可能当x从1,3,5,7,9,11,13,15,17,19

27、,21,23这12个数中产生时,输出y的值为1,故P1;当x从2,4,8,10,14,16,20,22这8个数中产生时,输出y的值为2,故P2;当x从6,12,18,24这4个数中产生时,输出y的值为3,故P3,所以,输出y的值为1的概率为,输出y的值为2的概率为,输出y的值为3的概率为.(2)当n2 100时,甲、乙所编程序各自输出y的值为i(i1,2,3)的频率如下:输出y的值为1的频率输出y的值为2的频率输出y的值为3的频率甲乙比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大(3)随机变量可能的取值为0,1,2,3.P(0)C,P(1)C,P(2)C,P(3)C,故的分布列

28、为0123P所以,E01231.即的数学期望为1.16K2,K6 一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同)(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望16解:设“取出的4张卡片中,含有编号为3的卡片”为事件A,则P(A).所以,取出的4张卡片中,含有编号为3的卡片的概率为.(2)随机变量X的所有可能取值为1,2,3,4.P(X1),P(X2),P(X3),P(X4).所以随机变量X的

29、分布列是X1234P随机变量X的数学期望E(X)1234.19B1,I2,K6 经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图14所示,经销商为下一个销售季度购进了130 t该农产品,以X(单位:t,100X150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为

30、需求量取该区间中点值的概率(例如:若需求量X时,T50013065 000.所以T(2)由(1)知利润T不少于57 000元,当且仅当120X150.由直方图知需求量X的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估计值为0.7.(3)依题意可得T的分布列为T45 00053 00061 00065 000P0.10.20.30.4所以E(T)45 0000.153 0000.261 0000.365 0000.459 400.K7条件概率与事件的独立性21K7、K9 某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责已知该系共有n

31、位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数)假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到记该系收到李老师或张老师所发活动通知信息的学生人数为X.(1)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(2)求使P(Xm)取得最大值的整数m.21解:(1)因为事件A:“学生甲收到李老师所发信息”与事件B:“学生甲收到张老师所发信息”是相互独立的事件,所以A与B相互独立由于P(A)P(B),故P(A)P(B)1,因此学生甲收到活动通知信息的概率P112.(2)当kn时,m只能取n,有P(Xm)P(Xn)1.当kn时,整数m满足km

32、t,其中t是2k和n中的较小者,由于“李老师和张老师各自独立、随机地发活动通知信息给k位同学”所包含的基本事件总数为(C)2,当Xm时,同时收到李老师和张老师转发信息的学生人数恰为2km,仅收到李老师或仅收到张老师转发信息的学生人数均为mk,由乘法计数原理知事件Xm所含基本事件数为CCCCCC,此时P(Xm).当kmt时,P(Xm)P(Xm1)CCCC(mk1)2(nm)(2km)m2k.假如k2kt成立则当(k1)2能被n2整除时,k2k2k1t,故P(Xm)在m2k和m2k1处达最大值;当(k1)2不能被n2整除时,P(Xm)在m2k处达最大值(注:表示不超过x的最大整数)下面证明k2kt

33、.因为1kn,所以2kk0.而2kn0,故2kn,显然2k2k.因此k2ks,故答案为2.16K7 为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为_1610 由已知可设5个班级参加的人数分别为x1,x2,x3,x4,x5,则x7,4,故(x17)2(x27)2(x37)2(x47)2(x57)220,即五个完全平方数之和为20,要使其中一个达到最大,这五个数必须是关于0对称分布的,而9101920,也就是(3)2(1)202123220,所以五个班级参加的人数分别

34、为4,6,7,8,10,最大数字为10.20K7、K8 甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判设各局中双方获胜的概率均为,各局比赛的结果相互独立,第1局甲当裁判(1)求第4局甲当裁判的概率;(2)X表示前4局中乙当裁判的次数,求X的数学期望20解:(1)记A1表示事件“第2局结果为甲胜”,A2表示事件“第3局甲参加比赛,结果为甲负”,A表示事件“第4局甲当裁判”则AA1A2.P(A)P(A1A2)P(A1)P(A2).(2)X的可能取值为0,1,2.记A3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B1表示事件“第1局结果为乙胜丙”

35、,B2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B3表示事件“第3局乙参加比赛时,结果为乙负”则P(X0)P(B1B2A3)P(B1)P(B2)P(A3),P(X2)P(B1B3)P(B1)P(B3),P(X1)1P(X0)P(X2)1,E(X)0P(X0)1P(X1)2P(X2).19K6、K7 甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立(1)分别求甲队以30,31,32胜利的概率;(2)若比赛结果为30或31,则胜利方得3分、对方得0分;若比赛结果为32,则胜利方得2分、对方得

36、1分求乙队得分X的分布列及数学期望19解:(1)记“甲队以30胜利”为事件A1,“甲队以31胜利”为事件A2,“甲队以32胜利”为事件A3,由题意,各局比赛结果相互独立,故P(A1)3,P(A2)C21,P(A3)C212.所以,甲队以30胜利、以31胜利的概率都为,以32胜利的概率为.(2)设“乙队以32胜利”为事件A4,由题意,各局比赛结果相互独立,所以P(A4)C1221,由题意,随机变量X的所有可能的取值为0,1,2,3.根据事件的互斥性得P(X0)P(A1A2)P(A1)P(A2).又P(X1)P(A3).P(X2)P(A4),P(X3)1P(X0)P(X1)P(X2),故X的分布列

37、为X0123P所以E(X)0123.K8离散型随机变量的数学特征与正态分布16K6,K8 某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?16解:方法一:(1)由已知得,小明中奖的概率为,小红中奖的概率为,且两人中奖与否互不影响记“这2人

38、的累计得分X3”的事件为A,则事件A的对立事件为“X5”,因为P(X5),所以P(A)1P(X5),即这两人的累计得分X3的概率为.(2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2)由已知可得,X1B,X2B,所以E(X1)2,E(X2)2,从而E(2X1)2E(X1),E(3X2)3E(X2).因为E(2X1)E(3X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大方法二:(1)由已知得,小明中奖的概率为,小红中奖的概率为,且两人中奖与否互不影响记

39、“这两人的累计得分X3”的事件为A,则事件A包含有“X0”“X2”“X3”三个两两互斥的事件,因为P(X0),P(X2),P(X3),所以P(A)P(X0)P(X2)P(X3),即这两人的累计得分X3的概率为.(2)设小明、小红都选择方案甲所获得的累计得分为X1,都选择方案乙所获得的累计得分为X2,则X1,X2的分布列如下:X1024PX2036P所以E(X1)024,E(X2)036.因为E(X1)E(X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大19K8 现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答(1)求张同学至少取到1道乙类题的概率;(2)已知所取

40、的3道题中有2道甲类题,1道乙类题设张同学答对每道甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立用X表示张同学答对题的个数,求X的分布列和数学期望19解: (1)设事件A“张同学所取的3道题至少有1道乙类题”,则有A“张同学所取的3道题都是甲类题”因为P(A),所以P(A)1P(A).(2)X所有的可能取值为0,1,2,3.P(X0)C;P(X1)CC;P(X2)CC;P(X3)C.X的分布列为:X0123P所以E(X)01232.20K7、K8 甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判设各局中双方获胜的概率均为,各

41、局比赛的结果相互独立,第1局甲当裁判(1)求第4局甲当裁判的概率;(2)X表示前4局中乙当裁判的次数,求X的数学期望20解:(1)记A1表示事件“第2局结果为甲胜”,A2表示事件“第3局甲参加比赛,结果为甲负”,A表示事件“第4局甲当裁判”则AA1A2.P(A)P(A1A2)P(A1)P(A2).(2)X的可能取值为0,1,2.记A3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B1表示事件“第1局结果为乙胜丙”,B2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B3表示事件“第3局乙参加比赛时,结果为乙负”则P(X0)P(B1B2A3)P(B1)P(B2)P(A3),P(X2)P(B1B3)

42、P(B1)P(B3),P(X1)1P(X0)P(X2)1,E(X)0P(X0)1P(X1)2P(X2).18K2、K4、K5,K8 某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X的分布列与期望E(X)18解:设Ai表示摸到i个红

43、球,Bj表示摸到j个蓝球,则Ai(i0,1,2,3)与Bj(j0,1)独立(1)恰好摸到1个红球的概率为P(A1).(2)X的所有可能值为0,10,50,200,且P(X200)P(A3B1)P(A3)P(B1),P(X50)P(A3B0)P(A3)P(B0),P(X10)P(A2B1)P(A2)P(B1),P(X0)1.综上知X的分布列为X01050200P从而有E(X)010502004(元)K9单元综合21K7、K9 某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数)假设李老师

44、和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到记该系收到李老师或张老师所发活动通知信息的学生人数为X.(1)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(2)求使P(Xm)取得最大值的整数m.21解:(1)因为事件A:“学生甲收到李老师所发信息”与事件B:“学生甲收到张老师所发信息”是相互独立的事件,所以A与B相互独立由于P(A)P(B),故P(A)P(B)1,因此学生甲收到活动通知信息的概率P112.(2)当kn时,m只能取n,有P(Xm)P(Xn)1.当kn时,整数m满足kmt,其中t是2k和n中的较小者,由于“李老师和张老师各自独立、随机地发活

45、动通知信息给k位同学”所包含的基本事件总数为(C)2,当Xm时,同时收到李老师和张老师转发信息的学生人数恰为2km,仅收到李老师或仅收到张老师转发信息的学生人数均为mk,由乘法计数原理知事件Xm所含基本事件数为CCCCCC,此时P(Xm).当kmt时,P(Xm)P(Xm1)CCCC(mk1)2(nm)(2km)m2k.假如k2kt成立则当(k1)2能被n2整除时,k2k2k1t,故P(Xm)在m2k和m2k1处达最大值;当(k1)2不能被n2整除时,P(Xm)在m2k处达最大值(注:表示不超过x的最大整数)下面证明k2kt.因为1kn,所以2kk0.而2kn0,故2kn,显然2k2k.因此k2

46、kt.18K9 某人在如图14所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物,根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(2)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望图1418解:(1)所种作物总株数N1234515,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和

47、边界上分别随机选取一株的不同结果有CC36种,选取的两株作物恰好“相近”的不同结果有3328种故从三角形地块的内部和边界上分别随机选取一株作物,它们恰好“相近”的概率为.(2)先求从所种作物中随机选取的一株作物的年收获量Y的分布列因为P(Y51)P(X1),P(Y48)P(X2),P(Y45)P(X3),P(Y42)P(X4)所以只需求出P(Xk)(k1,2,3,4)即可记nk为其“相近”作物恰有k株的作物株数(k1,2,3,4),则n12,n24,n36,n43.由P(Xk)得P(X1),P(X2),P(X3),P(X4).故所求的分布列为Y51484542P所求的数学期望为E(Y)5148454246.19K9 设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分(1)当a3,b2,c1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量为取出此2球所得分数之和,求的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量为取出此球所得分数若E,D,求abc.19解:(1)由题意得,2,3,4,5,6.P(2),P(3),P(4).P(5),P(6),所以的分布列为23456P (2)由题意知的分布列为123P所以E,D122232,化简得解得a3c,b2c,故abc321.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3