ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:340KB ,
资源ID:133909      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-133909-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018届高考数学(理)二轮复习专题检测(十五) 立体几何中的向量方法 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018届高考数学(理)二轮复习专题检测(十五) 立体几何中的向量方法 WORD版含答案.doc

1、专题检测(十五) 立体几何中的向量方法A卷夯基保分专练1(2017惠州三调)如图,四边形ABCD是圆柱OQ的轴截面,点P在圆柱OQ的底面圆周上,G是DP的中点,圆柱OQ的底面圆的半径OA2,侧面积为8,AOP120.(1)求证:AGBD;(2)求二面角PAGB的余弦值解:建立如图所示的空间直角坐标系,由题意可知822AD,解得AD2.作PEAB,垂足为E,OPOA2,AOP120,EOP60,PE,OE1,AEAOOE3.则A(0,0,0),B(0,4,0),D(0,0,2),P(,3,0),G是DP的中点,G.(1)证明:(0,4,2),.(0,4,2)0,即AGBD.(2)(,1,0),0

2、,0,是平面APG的法向量设n(x,y,1)是平面ABG的法向量,由则解得n(2,0,1),则cos,n.由图知,二面角PAGB为锐角,二面角PAGB的余弦值为.2(2017北京高考)如图,在四棱锥PABCD中,底面ABCD为正方形,平面PAD平面ABCD,点M在线段PB上,PD平面MAC,PAPD,AB4.(1)求证:M为PB的中点;(2)求二面角BPDA的大小;(3)求直线MC与平面BDP所成角的正弦值解:(1)证明:如图,设AC,BD的交点为E,连接ME.因为PD平面MAC,平面MAC平面PDBME,所以PDME.因为底面ABCD是正方形,所以E为BD的中点所以M为PB的中点(2)取AD

3、的中点O,连接OP,OE.因为PAPD,所以OPAD.又因为平面PAD平面ABCD,平面PAD平面ABCDAD,OP平面PAD,所以OP平面ABCD.因为OE平面ABCD,所以OPOE.因为底面ABCD是正方形,所以OEAD.以O为原点,以,为x轴,y轴,z轴的正方向建立如图所示的空间直角坐标系Oxyz,则P(0,0,),D(2,0,0),B(2,4,0),(4,4,0),(2,0,)设平面BDP的一个法向量为n(x,y,z),则即令x1,得y1,z.于是n(1,1,)又平面PAD的一个法向量为p(0,1,0),所以cosn,p.由题知二面角BPDA为锐角,所以二面角BPDA的大小为60.(3

4、)由题意知M,C(2,4,0),则.设直线MC与平面BDP所成角为,则sin |cosn,|.所以直线MC与平面BDP所成角的正弦值为.3(2017安徽名校阶段性测试)已知四棱锥PABCD中,底面ABCD是梯形,BCAD,ABAD,且ABBC1,AD2,顶点P在平面ABCD内的射影H在AD上,PAPD.(1)求证:平面PAB平面PAD;(2)若直线AC与PD所成角为60,求二面角APCD的余弦值解:(1)证明:PH平面ABCD,AB平面ABCD,PHAB.ABAD,ADPHH,AD平面PAD,PH平面PAD,AB平面PAD.又AB平面PAB,平面PAB平面PAD.(2)以A为坐标原点,建立如图

5、所示的空间直角坐标系Axyz,PH平面ABCD,z轴PH.则A(0,0,0),C(1,1,0),D(0,2,0),设AHa,PHh(0a0)则P(0,a,h)(0,a,h),(0,a2,h),(1,1,0)PAPD,a(a2)h20.AC与PD所成角为60,|cos,|,(a2)2h2,(a2)(a1)0,0a0,h1,P(0,1,1)(0,1,1),(1,1,0),(1,0,1),(1,1,0),设平面APC的法向量为n(x1,y1,z1),则即令x11,得y11,z11,所以平面APC的一个法向量为n(1,1,1),设平面DPC的法向量为m(x2,y2,z2)由即令x21,得y21,z21

6、,所以平面DPC的一个法向量为(1,1,1)cosm,n.二面角APCD的平面角为钝角,二面角APCD的余弦值为.4(2017成都一诊)如图,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,G为BD的中点,点R在线段BH上,且(0)现将AED,CFD,DEF分别沿DE,DF,EF折起,使点A,C重合于点B(该点记为P),如图所示(1)若2,求证:GR平面PEF;(2)是否存在正实数,使得直线FR与平面DEF所成角的正弦值为?若存在,求出的值;若不存在,请说明理由解:(1)证明:由题意,可知PE,PF,PD三条直线两两垂直PD平面PEF.在图中,E,F分别是AB,BC的中

7、点,G为BD的中点,EFAC,GDGB2GH.在图中,2,且2,在PDH中,GRPD.GR平面PEF.(2)由题意,分别以PF,PE,PD所在直线为x轴,y轴,z轴建立如图所示的空间直角坐标系Pxyz.设PD4,则P(0,0,0),F(2,0,0),E(0,2,0),D(0,0,4),H(1,1,0),(1,1,0),R.(2,2,0),(0,2,4),设平面DEF的法向量为m(x,y,z),由得取z1,得y2,x2,则m(2,2,1)直线FR与平面DEF所成角的正弦值为,|cos m,|.921870.解得或(不合题意,舍去)故存在正实数,使得直线FR与平面DEF所成角的正弦值为.B卷大题增

8、分专练1.(2017山东高考)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120得到的,G是的中点(1)设P是上的一点,且APBE,求CBP的大小;(2)当AB3,AD2时,求二面角EAGC的大小解:(1)因为APBE,ABBE,AB,AP平面ABP,ABAPA,所以BE平面ABP.又BP平面ABP,所以BEBP.又EBC120,所以CBP30.(2)以B为坐标原点,分别以BE,BP,BA所在的直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系由题意得A(0,0,3),E(2,0,0),G(1,3),C(1,0),故(2,0,3),(1,0),(2,

9、0,3),设m(x1,y1,z1)是平面AEG的一个法向量由可得取z12,可得平面AEG的一个法向量m(3,2)设n(x2,y2,z2)是平面ACG的一个法向量由可得取z22,可得平面ACG的一个法向量n(3,2)所以cosm,n.由图知二面角EAGC为锐角,故所求二面角EAGC的大小为60.2(2017全国卷)如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCD,ABBCAD,BADABC90,E是PD的中点(1)证明:直线CE平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45,求二面角MABD的余弦值解:(1)证明:取PA的中点F,连接EF,BF.因为E

10、是PD的中点,所以EFAD,EFAD.由BADABC90,得BCAD,又BCAD,所以EF綊BC,所以四边形BCEF是平行四边形,CEBF,又CE平面PAB,BF平面PAB,故CE平面PAB.(2)由已知得BAAD,以A为坐标原点,的方向为x轴正方向,|为单位长度,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,1,),(1,0,),(1,0,0)设M(x,y,z)(0x1),则(x1,y,z),(x,y1,z)因为BM与底面ABCD所成的角为45,而n(0,0,1)是底面ABCD的法向量,所以|cos,n|sin 45,即(x1)2y2z

11、20.又M在棱PC上,设,则x,y1,z.由解得(舍去),或所以M,从而.设m(x0,y0,z0)是平面ABM的法向量,则即所以可取m(0,2)于是cosm,n.由图知二面角MABD为锐角,因此二面角MABD的余弦值为.3.如图,在梯形ABCD中,ABCD,ADDCCB1,BCD120,四边形BFED为矩形,平面BFED平面ABCD,BF1.(1)求证:AD平面BFED;(2)点P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为,试求的最小值解:(1)证明:在梯形ABCD中,ABCD,ADDCCB1,BCD120,AB2.BD2AB2AD22ABADcos 603.AB2AD2BD2,

12、ADBD.平面BFED平面ABCD,平面BFED平面ABCDBD,DE平面BFED,DEDB,DE平面ABCD,DEAD,又DEBDD,AD平面BFED.(2)由(1)知,直线AD,BD,ED两两垂直,故以D为原点,直线DA,DB,DE分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,令EP(0),则D(0,0,0),A(1,0,0),B(0,0),P(0,1),(1,0),(0,1)设n1(x,y,z)为平面PAB的法向量,由得取y1,则n1(,1,)n2(0,1,0)是平面ADE的一个法向量,cos .0,当时,cos 有最大值,的最小值为60.4.(2018届高三湖北五校联考)如图,在

13、四棱锥PABCD中,PA平面ABCD,ADBC,ADCD,且ADCD2,BC4,PA2.(1)求证:ABPC;(2)在线段PD上,是否存在一点M,使得二面角MACD的大小为45,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由解:(1)证明:如图,由已知得四边形ABCD是直角梯形,由ADCD2,BC4,可得ABAC4,所以BC2AB2AC2,所以BAC90,即ABAC,因为PA平面ABCD,所以PAAB,又PAACA,所以AB平面PAC,所以ABPC.(2)存在,理由如下:取BC的中点E,则AEBC,以A为坐标原点,AE,AD,AP所在直线为x轴,y轴,z轴建立如图所示的空间直角坐标系,则A(0,0,0),C(2,2,0),D(0,2,0),P(0,0,2),B(2,2,0),(0,2,2),(2,2,0)设t (0t1),则点M的坐标为(0,2t,22t),所以(0,2t,22t)设平面MAC的法向量是n(x,y,z),则即令x1,得y1,z,则n.又m(0,0,1)是平面ACD的一个法向量,所以|cosm,n|,解得t,即点M是线段PD的中点此时平面MAC的一个法向量n(1,1,),又(2,3,1)设BM与平面MAC所成的角为,则sin |cosn,|.故BM与平面MAC所成角的正弦值为.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3