ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:172.99KB ,
资源ID:1313998      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1313998-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023届新高考数学专题复习 专题20 立体几何中的平行与垂直问题(学生版).docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2023届新高考数学专题复习 专题20 立体几何中的平行与垂直问题(学生版).docx

1、专题20 立体几何中的平行与垂直问题一、题型选讲题型一 、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。直线与平面垂直关键是找两条相交直线例1、(2019南通、泰州、扬州一调)如图,在四棱锥PABCD中,M,N分别为棱PA,PD的中点已知侧面PAD底面ABCD,底面ABCD是矩形,DADP.求证:(1)MN平面PBC;MD平面PAB.例2、(2019扬州期末)如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B平面AB

2、C,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点(1) 求证:EF平面ABC;(2) 求证:BB1AC.例3、(2019南京、盐城二模)如图,在三棱柱ABCA1B1C1中,ABAC,A1CBC1,AB1BC1,D,E分别是AB1和BC的中点求证:(1)DE平面ACC1A1;(2)AE平面BCC1B1.例4、(2019苏锡常镇调研)如图,三棱锥DABC中,已知ACBC,ACDC,BCDC,E,F分别为BD,CD的中点求证:(1) EF平面ABC;(2) BD平面ACE.例5、(2019苏州三市、苏北四市二调)如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1B1

3、C1.设A1C与AC1交于点D,B1C与BC1交于点E.求证:(1) DE平面ABB1A1;(2) BC1平面A1B1C.例6、(2017苏北四市一模)如图,在正三棱柱ABCA1B1C1中,已知D,E分别为BC,B1C1的中点,点F在棱CC1上,且EFC1D.求证:(1) 直线A1E平面ADC1;(2) 直线EF平面ADC1.题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。平面与平面的平行关键是在一个平面内找两条相交直线;平面与平面垂直可以从二面角入手页可以从线面垂直进行转化。例7、(2020年江苏高考)在三棱

4、柱ABC-A1B1C1中,ABAC,B1C平面ABC,E,F分别是AC,B1C的中点(1)求证:EF平面AB1C1;(2)求证:平面AB1C平面ABB1例8、(2019宿迁期末)在四棱锥SABCD中,SA平面ABCD,底面ABCD是菱形(1) 求证:平面SAC平面SBD;(2) 若点M是棱AD的中点,点N在棱SA上,且ANNS,求证:SC平面BMN.例9、(2019苏北四市、苏中三市三调)ABCDPEF如图,在四棱锥PABCD中,底面ABCD是平行四边形,平面BPC平面DPC,E,F分别是PC,AD的中点求证:(1)BECD; (2)EF平面PAB例10、(2018扬州期末)如图,在直三棱柱A

5、BCA1B1C1中,D,E分别为AB,AC的中点(1) 求证:B1C1平面A1DE;(2) 若平面A1DE平面ABB1A1,求证:ABDE.例11、(2017徐州、连云港、宿迁三检)如图,在四棱锥中,底面是矩形,点在棱上(异于点,),平面与棱交于点(1)求证:;ABCDEFP((2)若平面平面,求证:二、达标训练1、(2018无锡期末)如图,ABCD是菱形,DE平面ABCD,AFDE,DE2AF.(1) 求证:AC平面BDE;(2) 求证:AC平面BEF.2、(2018苏北四市期末)如图,在直三棱柱ABCA1B1C1中,ABC90,ABAA1,M,N分别是AC,B1C1的中点求证:(1) MN

6、平面ABB1A1;(2) ANA1B.3、(2018南京、盐城、连云港二模)如图,已知矩形ABCD所在平面与ABE所在平面互相垂直,AEAB,M,N,H分别为DE,AB,BE的中点(1) 求证:MN平面BEC;(2) 求证:AHCE.4、(2018苏州暑假测试)如图,在三棱锥PABC中,已知平面PBC平面ABC.(1) 若ABBC,CPPB,求证:CPPA;(2) 若过点A作直线l平面ABC,求证:l平面PBC.5、(2018常州期末)如图,四棱锥PABCD的底面ABCD是平行四边形,PC平面ABCD,PBPD,点Q是棱PC上异于P,C的一点(1) 求证:BDAC;(2) 过点Q和AD的平面截四棱锥得到截面ADQF(点F在棱PB上),求证:QFBC.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3