收藏 分享(赏)

高中数学:3.1.1导数与函数的单调性(一) 教案 (北师大选修2-2).doc

上传人:高**** 文档编号:1285293 上传时间:2024-06-06 格式:DOC 页数:3 大小:657.50KB
下载 相关 举报
高中数学:3.1.1导数与函数的单调性(一) 教案 (北师大选修2-2).doc_第1页
第1页 / 共3页
高中数学:3.1.1导数与函数的单调性(一) 教案 (北师大选修2-2).doc_第2页
第2页 / 共3页
高中数学:3.1.1导数与函数的单调性(一) 教案 (北师大选修2-2).doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网() 您身边的高考专家3.1.1 导数与函数的单调性教学过程:【引 例】1、 确定函数在哪个区间内是增函数?在哪个区间内是减函数?解:,在上是减函数,在上是增函数。问:1、为什么在上是减函数,在上是增函数?都是反映函数随自变量的变化情况。2、研究函数的单调区间你有哪些方法?(1) 观察图象的变化趋势;(函数的图象必须能画出的)(2) 利用函数单调性的定义。(复习一下函数单调性的定义)2、确定函数f(x)=2x36x2+7在哪个区间内是增函数?哪个区间内是减函数?(1) 能画出函数的图象吗?那如何解决?试一试。提问一个学生:解决了吗?到哪一步解决不了?(产生认知冲突)(2) (多媒体放

2、映) 【发现问题】定义是解决单调性最根本的工具,但有时很麻烦,甚至解决不了。尤其是在不知道函数的图象的时候,如函数f(x)=2x36x2+7,这就需要我们寻求一个新的方法来解决。(研究的必要性)事实上用定义研究函数的单调区间也不容易。【探 究】我们知道函数的图象能直观的反映函数的变化情况,下面通过函数的图象规律来研究。问:如何入手?(图象) 从函数f(x)=2x36x2+7的图象吗?1、研究二次函数的图象;(1) 学生自己画图研究探索。(2) 提问:以前我们是通过二次函数图象的哪些特征来研究它的单调性的?(3) (开口方向,对称轴)既然要寻求一个新的办法,显然要换个角度分析。(4) 提示:我们

3、最近研究的哪个知识(通过图象的哪个量)能反映函数的变化规律?(5) 学生继续探索,得出初步规律。几何画板演示,共同探究。得到这个二次函数图象的切线斜率的变化与单调性的关系。(学生总结):该函数在区间上单调递减,切线斜率小于0,即其导数为负;在区间上单调递增,切线斜率大于0,即其导数为正;注:切线斜率等于0,即其导数为0;如何理解?就此函数而言这种规律是否一致?是否其它函数也有这样的规律呢?2、先看一次函数图象;3、再看两个我们熟悉的函数图象。(验证)(1) 观察三次函数的图象;(几何画板演示)(2) 观察某个函数的图象。(几何画板演示)指出:我们发现函数的单调性与导数的符号有密切的关系。这节课

4、我们就来学习如何用导数研究函数的单调性(幻灯放映课题)。【新课讲解】4、请同学们根据刚才观察的结果进行总结:导数与函数的单调性有什么关系?请一个学生回答。(幻灯放映)一般地,设函数在某个区间可导,则函数在该区间内如果在这个区间内,则为这个区间内的增函数;如果在这个区间内,则为这个区间内的减函数。若在某个区间内恒有,则为常函数。这个结论是我们通过观察图象得到的,只是一个猜想,正确吗?答案是肯定的。严格的证明需要用到中值定理,大学里才能学到。这儿我们可以直接用这个结论。小结:数学中研究问题的常规思想方法是:从特殊到一般,从简单的复杂。结论应用:由以上结论知:函数的单调性与其倒数有关,因此我们可以用

5、导数法去探讨函数的单调性。下面举例说明:【例题讲解】例1、 求证:在上是增函数。由学生叙述过程老师板书:,即,函数在上是增函数。注:我们知道在R上是增函数,课后试一试,看如何用导数法证明。学生归纳步骤:1、求导;2、判断导数符号;3、下结论。例2、 确定函数f(x)=2x36x2+7在哪个区间内是增函数,哪个区间内是减函数.由学生叙述过程老师板书:解:f(x)=(2x36x2+7)=6x212x, 令6x212x0,解得x2或x0当x(,0)时,f(x)0,f(x)是增函数;当x(2,+)时,f(x)0,f(x)是增函数.令6x212x0,解得0x2.当x(0,2)时,f(x)0,f(x)是减

6、函数. 学生小结:用导数求函数单调区间的步骤:(1) 确定函数f(x)的定义域;(2) 求函数f(x)的导数f(x).(3) 令f(x)0解不等式,得x的范围就是递增区间.令f(x)0解不等式,得x的范围,就是递减区间【课堂练习】1确定下列函数的单调区间(1)y=x39x2+24x (2)y=3xx3(1)解:y=(x39x2+24x)=3x218x+24=3(x2)(x4)令3(x2)(x4)0,解得x4或x2.y=x39x2+24x的单调增区间是(4,+)和(,2)令3(x2)(x4)0,解得2x4.y=x39x2+24x的单调减区间是(2,4)(2)解:y=(3xx3)=33x2=3(x

7、21)=3(x+1)(x1)令3(x+1)(x1)0,解得1x1.y=3xx3的单调增区间是(1,1).令3(x+1)(x1)0,解得x1或x1.y=3xx3的单调减区间是(,1)和(1,+)2、设是函数的导数, 的图象如图所示, 则的图象最有可能是( ) 小结:重点是抓住导函数的图象与原函数的图象从哪里发生联系?【课堂小结】1.函数导数与单调性的关系:若函数y=f(x)在某个区间内可导,如果f (x)0, 则f(x)为增函数;如果f(x)0, 则f(x)为减函数.2.本节课中,用导数去研究函数的单调性是中心,能灵活应用导数解题是目的,另外应注意数形结合在解题中的应用.3.掌握研究数学问题的一般方法:从特殊到一般,从简单到复杂.【思考题】对于函数f(x)=2x36x2+7思考1、能不能画出该函数的草图?思考2、在区间(0,2)内有几个解?【课后作业】课本p42习题2.4 1,2- 3 - 版权所有高考资源网

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3