ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:267.50KB ,
资源ID:128110      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-128110-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教A版高中数学教案 选修2-2:2.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

人教A版高中数学教案 选修2-2:2.doc

1、数学归纳法教学设计周村区实验中学 申臻臻【教学目标】(1)知识与技能:理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤;会用数学归纳法证明某些简单的与正整数有关的命题;能通过“归纳、猜想”的过程得出结论并用数学归纳法证明结论。(2)过程与方法:努力创设愉悦的课堂气氛,使学生处于积极思考,大胆质疑的氛围中,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会归纳递推的数学思想。(3)情感态度与价值观:通过本节课的教学,使学生领悟数学归纳法的思想,由生活实例,激发学生学习的热情,提高学生学习的兴趣,培养学生大胆猜想,小心求证,以及发现问题、提出问题,解决问题的数学能力。【教学重点】借

2、助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,能熟练运用它证明一些简单的与正整数有关的数学命题;【教学难点】数学归纳法中递推关系的应用。【辅助教学】多媒体技术辅助课堂教学。【教学过程】一、创设问题情境,启动学生思维(说明引入数学归纳法的必要性)(情景一)问题1:大球中有个小球,如何证明它们都是绿色的? 问题2: 如果是一个等差数列,怎样得到? (情境二)数学家费马运用不完全归纳法得出费马猜想的事例。【设计意图:】以上两个情境分别是完全归纳法和不完全归纳法的体现,发现其结论正确性不同,而这里实际上体现了数学中的归纳思想。归纳法分为“不完全归纳法(只验证几个个体成立,得到一般性结论,但结论

3、不一定正确)”和“完全归纳法(验证每个个体都成立,得到一般性结论,其结论一定正确)”。(情景三)问题:如何解决不完全归纳法存在的问题呢?如何保证骨牌一一倒下?需要几个步骤才能做到? 二、搜索生活实例,激发学生兴趣展示多米诺骨牌的动画,探究多米诺骨牌如何才能全部倒下?(由多米诺骨牌游戏的原理启发学生探索数学方法,解决情境三的问题。) 第一块骨牌必须要倒下 任意相邻的两块骨牌,若前一块倒下,则后一块也倒下 相当于能推倒第一块骨牌 相当于第块骨牌能推倒第块骨牌三、师生合作,形成概念。 一般地,证明一个与正整数有关的命题,可以按照以下步骤进行:(1)(归纳奠基)证明当取第一个值时命题成立;(2)(归纳

4、递推)假设时命题成立,证明当命题也成立.完成这两个步骤后, 就可以断定命题对从开始的所有正整数都成立。上述这种证明方法叫做数学归纳法。四、讲练结合,巩固概念类型一 用数学归纳法证明等式例1:用数学归纳法证明: 证明:(1)当时,左边:,右边:,左边=右边,等式成立。 (2)假设当时等式成立,即 则当时, 左边 右边即当时,等式也成立。 由(1),(2)得:对,等式成立【方法技巧】证明中的几个注意问题:(1)在第一步中的初始值不一定从取起, 证明应根据具体情况而定.(找准起点,奠基要稳)(2)在第二步中,证明命题成立时,必须用到命题成立这一归纳假设,否则就打破数学归纳法步骤之间的逻辑严密关系,造

5、成推理无效. (用上假设,递推才真) (3)明确变形目标(写明结论,才算完整)变式训练:用数学归纳法证明:证明: (1)当时,左边,右边,左边=右边,等式成立; (2)假设当时,等式成立,即,则当时所以,公式成立,由(1)(2)可知,当时,公式成立.类型二 归纳猜想证明例2:已知数列 为该数列的前项和,计算,根据计算结果,猜想的表达式,并用数学归纳法进行证明.解:, , 根据上述结果,猜想.证明:(1)当时,左边,右边,猜想成立,(2)假设当时猜想成立,即,那么,当时, 所以,时,猜想成立,由(1)(2)可知,对于,猜想成立,即, 【方法技巧】 “归纳猜想证明”的一般环节 学生总结 课件展示

6、框图呈现变式训练:设,令, (1)写出,并猜想出数列的通项公式;(2)用数学归纳法证明你的结论.五、课堂小结1.归纳法:完全归纳法和不完全归纳法;2.用数学归纳法证明等式:找准基础,奠基要稳。用上假设,递推才真。写明结论,才算完整3.归纳猜想证明六、当堂检测1.用数学归纳法证明的过程中,在验证时,左端计算所得的项为(C)A. B. C. D. 2.用数学归纳法证明,“从到”左端增乘的代数式为3.已知数列的前n项和,而,通过计算,猜想( B )A. B. C. D. 设计意图:检测学生对本节课内容的掌握程度,锻炼实际应用能力.拓展训练(延伸提高,课下思考) 1.用数学归纳法证明.2. (2014石家庄高二检测)求证:.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3