1、高考资源网( ),您身边的高考专家突破点2解三角形提炼1常见解三角形的题型及解法(1)已知两角及一边,利用正弦定理求解(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一(3)已知两边及其夹角,利用余弦定理求解(4)已知三边,利用余弦定理求解.提炼2三角形形状的判断(1)从边出发,全部转化为边之间的关系进行判断(2)从角出发,全部转化为角之间的关系,然后进行恒等变形,再判断注意:要灵活选用正弦定理或余弦定理,且在变形的时候要注意方程的同解性,如方程两边同除以一个数时要注意该数是否为零,避免漏解.提炼3三角形的常用面积公式设ABC的内角A,B,C的对边分别为a,b,c ,其
2、面积为S.(1)Sahabhbchc(ha,hb,hc分别表示a,b,c边上的高)(2)Sabsin Cbcsin AcasinB(3)Sr(abc)(r为三角形ABC内切圆的半径)回访1正、余弦定理的应用1(2016全国甲卷)ABC的内角A,B,C的对边分别为a,b,c,若cos A,cos C,a1,则b_.在ABC中,cos A,cos C,sin A,sin C,sin Bsin(AC)sin Acos Ccos Asin C.又,b.2(2015全国卷)在平面四边形ABCD中,ABC75,BC2,则AB的取值范围是_(,)如图所示,延长BA与CD相交于点E,过点C作CFAD交AB于点
3、F,则BFABBE.在等腰三角形CFB中,FCB30,CFBC2,BF.在等腰三角形ECB中,CEB30,ECB75,BECE,BC2,BE.AB0)则aksin A,bksin B,cksin C,代入中,有,2分即sin Asin Bsin Acos Bcos Asin Bsin(AB).4分在ABC中,由ABC,有sin(AB)sin(C)sin C,所以sin Asin Bsin C6分(2)由已知,b2c2a2bc,根据余弦定理,有cos A,8分所以sin A.9分由(1)知sin Asin Bsin Acos Bcos Asin B,所以sin Bcos B sin B,11分故
4、tan B4.12分关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口变式训练1(1)在ABC中,a,b,c分别为内角A,B,C的对边,已知a2,c3,cos B,则_. 【导学号:85952013】由余弦定理b2a2c22accos B,得b2223222310,所以b.由余弦定理,得cos C.因为B是ABC的内角,所以sin B.由正弦定理,得sin A,所以.(2)在ABC中,a,b,c分别为内角A,B,C的对边,且acos Bbcos(BC)
5、0.证明:ABC为等腰三角形;若2(b2c2a2)bc,求cos Bcos C的值解证明:acos Bbcos (BC)0,由正弦定理得sin Acos Bsin Bcos(A)0,即sin Acos Bsin Bcos A0,3分sin(AB)0,ABk,kZ.4分A,B是ABC的两内角,AB0,即AB,5分ABC是等腰三角形.6分由2(b2c2a2)bc,得,7分由余弦定理得cos A,8分cos Ccos(2A)cos 2A12cos2 A.10分AB,cos Bcos A,11分cos Bcos C.12分热点题型2三角形面积的求解问题题型分析:三角形面积的计算及与三角形面积有关的最值
6、问题是解三角形的重要命题点之一,本质上还是考查利用正、余弦定理解三角形,难度中等.(2015山东高考)设f(x)sin xcos xcos2.(1)求f(x)的单调区间;(2)在锐角ABC中,角A,B,C的对边分别为a,b,c.若f0,a1,求ABC面积的最大值【解题指导】(1)(2)解(1)由题意知f(x)sin 2x.2分由2k2x2k,kZ,可得kxk,kZ.由2k2x2k,kZ,可得kxk,kZ.4分所以f(x)的单调递增区间是k,k(kZ);单调递减区间是(kZ).6分(2)由fsin A0,得sin A,7分由题意知A为锐角,所以cos A.8分由余弦定理a2b2c22bccos
7、A,可得1bcb2c22bc,10分即bc2,当且仅当bc时等号成立因此bcsin A,所以ABC面积的最大值为.12分1在研究三角函数的图象与性质时常先将函数的解析式利用三角恒等变换转化为yAsin(x)B(或yAcos(x)B,yAtan(x)B)的形式,进而利用函数ysin x(或ycos x,ytan x)的图象与性质解决问题2在三角形中,正、余弦定理可以实现边角互化,尤其在余弦定理a2b2c22bccos A中,有a2c2和ac两项,二者的关系a2c2(ac)22ac经常用到,有时还可利用基本不等式求最值变式训练2(名师押题)在ABC中,角A,B,C的对边分别为a,b,c,a4cos C,b1.(1)若sin C,求a,c;(2)若ABC是直角三角形,求ABC的面积解(1)sin C,cos2C1sin2C,cos C.1分4cos Ca,a,解得a或a.3分又a4cos C44,a212(a21c2),即2c2a21.5分当a时,c2;当a时,c.6分(2)由(1)可知2c2a21.又ABC为直角三角形,C不可能为直角若角A为直角,则a2b2c2c21,2c21c21,c,a,8分Sbc1.9分若角B为直角,则b2a2c2,a2c21.2c2a21(1c2)1,c2,a2,即c,a,11分Sac.12分欢迎广大教师踊跃来稿,稿酬丰厚。