收藏 分享(赏)

高中数学竞赛教材讲义 第六章 三角函数讲义.doc

上传人:高**** 文档编号:1271923 上传时间:2024-06-06 格式:DOC 页数:10 大小:760KB
下载 相关 举报
高中数学竞赛教材讲义 第六章 三角函数讲义.doc_第1页
第1页 / 共10页
高中数学竞赛教材讲义 第六章 三角函数讲义.doc_第2页
第2页 / 共10页
高中数学竞赛教材讲义 第六章 三角函数讲义.doc_第3页
第3页 / 共10页
高中数学竞赛教材讲义 第六章 三角函数讲义.doc_第4页
第4页 / 共10页
高中数学竞赛教材讲义 第六章 三角函数讲义.doc_第5页
第5页 / 共10页
高中数学竞赛教材讲义 第六章 三角函数讲义.doc_第6页
第6页 / 共10页
高中数学竞赛教材讲义 第六章 三角函数讲义.doc_第7页
第7页 / 共10页
高中数学竞赛教材讲义 第六章 三角函数讲义.doc_第8页
第8页 / 共10页
高中数学竞赛教材讲义 第六章 三角函数讲义.doc_第9页
第9页 / 共10页
高中数学竞赛教材讲义 第六章 三角函数讲义.doc_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第六章 三角函数一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。角的大小是任意的。定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2弧度。若圆心角的弧长为L,则其弧度数的绝对值|=,其中r是圆的半径。定义3 三角函数,在直角坐标平面内,把角的顶点放在原点,始边与x轴的正半轴重合,在角的终边上任意取一个不同于原点的点P,设它的坐标为(x,y),到原点的距离为r,则正弦函数sin=,余弦函数cos=,正切函数tan=,余切函数c

2、ot=,正割函数sec=,余割函数csc=定理1 同角三角函数的基本关系式,倒数关系:tan=,sin=,cos=;商数关系:tan=;乘积关系:tancos=sin,cotsin=cos;平方关系:sin2+cos2=1, tan2+1=sec2, cot2+1=csc2.定理2 诱导公式()sin(+)=-sin, cos(+)=-cos, tan(+)=tan, cot(+)=cot;()sin(-)=-sin, cos(-)=cos, tan(-)=-tan, cot(-)=cot; ()sin(-)=sin, cos(-)=-cos, tan=(-)=-tan, cot(-)=-co

3、t; ()sin=cos, cos=sin, tan=cot(奇变偶不变,符号看象限)。定理3 正弦函数的性质,根据图象可得y=sinx(xR)的性质如下。单调区间:在区间上为增函数,在区间上为减函数,最小正周期为2. 奇偶数. 有界性:当且仅当x=2kx+时,y取最大值1,当且仅当x=3k-时, y取最小值-1。对称性:直线x=k+均为其对称轴,点(k, 0)均为其对称中心,值域为-1,1。这里kZ.定理4 余弦函数的性质,根据图象可得y=cosx(xR)的性质。单调区间:在区间2k, 2k+上单调递减,在区间2k-, 2k上单调递增。最小正周期为2。奇偶性:偶函数。对称性:直线x=k均为其

4、对称轴,点均为其对称中心。有界性:当且仅当x=2k时,y取最大值1;当且仅当x=2k-时,y取最小值-1。值域为-1,1。这里kZ.定理5 正切函数的性质:由图象知奇函数y=tanx(xk+)在开区间(k-, k+)上为增函数, 最小正周期为,值域为(-,+),点(k,0),(k+,0)均为其对称中心。定理6 两角和与差的基本关系式:cos()=coscossinsin,sin()=sincoscossin; tan()=定理7 和差化积与积化和差公式:sin+sin=2sincos,sin-sin=2sincos,cos+cos=2coscos, cos-cos=-2sinsin,sinco

5、s=sin(+)+sin(-),cossin=sin(+)-sin(-),coscos=cos(+)+cos(-),sinsin=-cos(+)-cos(-).定理8 倍角公式:sin2=2sincos, cos2=cos2-sin2=2cos2-1=1-2sin2, tan2=定理9 半角公式:sin=,cos=,tan=定理10 万能公式: , ,定理11 辅助角公式:如果a, b是实数且a2+b20,则取始边在x轴正半轴,终边经过点(a, b)的一个角为,则sin=,cos=,对任意的角.asin+bcos=sin(+).定理12 正弦定理:在任意ABC中有,其中a, b, c分别是角A

6、,B,C的对边,R为ABC外接圆半径。定理13 余弦定理:在任意ABC中有a2=b2+c2-2bcosA,其中a,b,c分别是角A,B,C的对边。定理14 图象之间的关系:y=sinx的图象经上下平移得y=sinx+k的图象;经左右平移得y=sin(x+)的图象(相位变换);纵坐标不变,横坐标变为原来的,得到y=sin()的图象(周期变换);横坐标不变,纵坐标变为原来的A倍,得到y=Asinx的图象(振幅变换);y=Asin(x+)(0)的图象(周期变换);横坐标不变,纵坐标变为原来的A倍,得到y=Asinx的图象(振幅变换);y=Asin(x+)(, 0)(|A|叫作振幅)的图象向右平移个单

7、位得到y=Asinx的图象。定义4 函数y=sinx的反函数叫反正弦函数,记作y=arcsinx(x-1, 1),函数y=cosx(x0, ) 的反函数叫反余弦函数,记作y=arccosx(x-1, 1). 函数y=tanx的反函数叫反正切函数。记作y=arctanx(x-, +). y=cosx(x0, )的反函数称为反余切函数,记作y=arccotx(x-, +).定理15 三角方程的解集,如果a(-1,1),方程sinx=a的解集是x|x=n+(-1)narcsina, nZ。方程cosx=a的解集是x|x=2kxarccosa, kZ. 如果aR,方程tanx=a的解集是x|x=k+a

8、rctana, kZ。恒等式:arcsina+arccosa=;arctana+arccota=.定理16 若,则sinxx-1,所以cos,所以sin(cosx) 0,又00,所以cos(sinx)sin(cosx).若,则因为sinx+cosx=(sinxcos+sincosx)=sin(x+),所以0sinx-cosxcos(-cosx)=sin(cosx).综上,当x(0,)时,总有cos(sinx)0,求证:【证明】 若+,则x0,由-0得coscos(-)=sin,所以0sin(-)=cos, 所以01,所以若+,则x0,由0-cos(-)=sin0,所以1。又0sin1,所以,得

9、证。注:以上两例用到了三角函数的单调性和有界性及辅助角公式,值得注意的是角的讨论。3最小正周期的确定。例4 求函数y=sin(2cos|x|)的最小正周期。【解】 首先,T=2是函数的周期(事实上,因为cos(-x)=cosx,所以co|x|=cosx);其次,当且仅当x=k+时,y=0(因为|2cosx|2),所以若最小正周期为T0,则T0=m, mN+,又sin(2cos0)=sin2sin(2cos),所以T0=2。4三角最值问题。例5 已知函数y=sinx+,求函数的最大值与最小值。【解法一】 令sinx=,则有y=因为,所以,所以1,所以当,即x=2k-(kZ)时,ymin=0,当,

10、即x=2k+(kZ)时,ymax=2.【解法二】 因为y=sinx+,=2(因为(a+b)22(a2+b2)),且|sinx|1,所以0sinx+2,所以当=sinx,即x=2k+(kZ)时, ymax=2,当=-sinx,即x=2k-(kZ)时, ymin=0。例6 设0,求sin的最大值。【解】因为00, cos0.所以sin(1+cos)=2sincos2= =当且仅当2sin2=cos2, 即tan=, =2arctan时,sin(1+cos)取得最大值。例7 若A,B,C为ABC三个内角,试求sinA+sinB+sinC的最大值。【解】 因为sinA+sinB=2sincos, si

11、nC+sin, 又因为,由,得sinA+sinB+sinC+sin4sin,所以sinA+sinB+sinC3sin=,当A=B=C=时,(sinA+sinB+sinC)max=.注:三角函数的有界性、|sinx|1、|cosx|1、和差化积与积化和差公式、均值不等式、柯西不等式、函数的单调性等是解三角最值的常用手段。5换元法的使用。例8 求的值域。【解】 设t=sinx+cosx=因为所以又因为t2=1+2sinxcosx,所以sinxcosx=,所以,所以因为t-1,所以,所以y-1.所以函数值域为例9 已知a0=1, an=(nN+),求证:an.【证明】 由题设an0,令an=tana

12、n, an,则an=因为,an,所以an=,所以an=又因为a0=tana1=1,所以a0=,所以。又因为当0xx,所以注:换元法的关键是保持换元前后变量取值范围的一致性。另外当x时,有tanxxsinx,这是个熟知的结论,暂时不证明,学完导数后,证明是很容易的。6图象变换:y=sinx(xR)与y=Asin(x+)(A, , 0).由y=sinx的图象向左平移个单位,然后保持横坐标不变,纵坐标变为原来的A倍,然后再保持纵坐标不变,横坐标变为原来的,得到y=Asin(x+)的图象;也可以由y=sinx的图象先保持横坐标不变,纵坐标变为原来的A倍,再保持纵坐标不变,横坐标变为原来的,最后向左平移

13、个单位,得到y=Asin(x+)的图象。例10 例10 已知f(x)=sin(x+)(0, 0)是R上的偶函数,其图象关于点对称,且在区间上是单调函数,求和的值。【解】 由f(x)是偶函数,所以f(-x)=f(x),所以sin(+)=sin(-x+),所以cossinx=0,对任意xR成立。又0,解得=,因为f(x)图象关于对称,所以=0。取x=0,得=0,所以sin所以(kZ),即=(2k+1) (kZ).又0,取k=0时,此时f(x)=sin(2x+)在0,上是减函数;取k=1时,=2,此时f(x)=sin(2x+)在0,上是减函数;取k=2时,此时f(x)=sin(x+)在0,上不是单调

14、函数,综上,=或2。7三角公式的应用。例11 已知sin(-)=,sin(+)=- ,且-,+,求sin2,cos2的值。【解】 因为-,所以cos(-)=-又因为+,所以cos(+)=所以sin2=sin(+)+(-)=sin(+)cos(-)+cos(+)sin(-)=,cos2=cos(+)-(-)=cos(+)cos(-)+sin(+)sin(-)=-1.例12 已知ABC的三个内角A,B,C成等差数列,且,试求的值。【解】 因为A=1200-C,所以cos=cos(600-C),又由于=,所以=0。解得或。又0,所以。例13 求证:tan20+4cos70.【解】 tan20+4co

15、s70=+4sin20三、基础训练题1已知锐角x的终边上一点A的坐标为(2sin3, -2cos3),则x的弧度数为_。2适合-2cscx的角的集合为_。3给出下列命题:(1)若,则sinsin;(2)若sinsin,则;(3)若sin0,则为第一或第二象限角;(4)若为第一或第二象限角,则sin0. 上述四个命题中,正确的命题有_个。4已知sinx+cosx=(x(0, ),则cotx=_。5简谐振动x1=Asin和x2=Bsin叠加后得到的合振动是x=_。6已知3sinx-4cosx=5sin(x+1)=5sin(x-2)=5cos(x+3)=5cos(x-4),则1,2,3,4分别是第_

16、象限角。7满足sin(sinx+x)=cos(cosx-x)的锐角x共有_个。8已知,则=_。9=_。10cot15cos25cot35cot85=_。11已知,(0, ), tan, sin(+)=,求cos的值。12已知函数f(x)=在区间上单调递减,试求实数m的取值范围。四、高考水平训练题1已知一扇形中心角是a,所在圆半径为R,若其周长为定值c(c0),当扇形面积最大时,a=_.2. 函数f(x)=2sinx(sinx+cosx)的单调递减区间是_.3. 函数的值域为_.4. 方程=0的实根个数为_.5. 若sina+cosa=tana, a,则_a(填大小关系).6. (1+tan1)

17、(1+tan2)(1+tan44)(1+tan45)=_.7. 若0yx0, k=-1,求f(x)的单调区间;(3)试求最小正整数k,使得当x在任意两个整数(包括整数本身)间变化时,函数f(x)至少取得一次最大值和一次最小值。五、联赛一试水平训练题(一)1若x, yR,则z=cosx2+cosy2-cosxy的取值范围是_.2已知圆x2+y2=k2至少盖住函数f(x)=的一个最大值点与一个最小值点,则实数k的取值范围是_.3f()=5+8cos+4cos2+cos3的最小值为_.4方程sinx+cosx+a=0在(0,2)内有相异两实根,则+=_.5函数f(x)=|tanx|+|cotx|的单

18、调递增区间是_.6设sina0cosa, 且sincos,则的取值范围是_.7方程tan5x+tan3x=0在0,中有_个解.8若x, yR, 则M=cosx+cosy+2cos(x+y)的最小值为_.9若00)在一个最小正周期长的区间上的图象与函数g(x)=的图象所围成的封闭图形的面积是_.2若,则y=tan-tan+cos的最大值是_.3在ABC中,记BC=a, CA=b, AB=c, 若9a2+9b2-19c2=0,则=_.4设f(x)=x2-x, =arcsin, =arctan, =arccos, =arccot, 将f(), f(), f(), f()从小到大排列为_.5logsi

19、n1cos1=a, logsin1tan1=b, logcos1sin1=c, logcos1tan1=d。将a, b, c, d从小到大排列为_.6在锐角ABC中,cosA=cossin, cosB=cossin, cosC=cossin,则tantantan=_.7已知矩形的两边长分别为tan和1+cos(00恒成立,则的取值范围是_.10已知sinx+siny+sinz=cosx+cosy+cosz=0,则cos2x+ cos2y+ cos2z=_.11已知a1, a2, ,an是n个实常数,考虑关于x的函数:f(x)=cos(a1+x)+cos(a2+x) +cos(an+x)。求证:

20、若实数x1, x2满足f(x1)=f(x2)=0,则存在整数m,使得x2-x1=m.12在ABC中,已知,求证:此三角形中有一个内角为。13求证:对任意自然数n, 均有|sin1|+|sin2|+|sin(3n-1)|+|sin3n|.六、联赛二试水平训练题1已知x0, y0, 且x+y0(wR).2. 已知a为锐角,n2, nN+,求证:2n-2+1.3. 设x1, x2, xn, y1, y2, yn,满足x1=y1=, xn+1=xn+, yn+1=,求证:2xnyn3(n2).4已知,为锐角,且cos2+cos2+cos2=1,求证;+m,求证:对一切x都有2|sinnx-cosnx|3|sinnx-cosnx|.7在ABC中,求sinA+sinB+sinC-cosA-cosB-cosC的最大值。8求的有的实数a, 使cosa, cos2a, cos4a, , cos2na, 中的每一项均为负数。9已知i,tan1tan2tann=2, nN+, 若对任意一组满足上述条件的1,2,n都有cos1+cos2+cosn,求的最小值。高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 )

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3