温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。高考大题专攻练3.数列(A组)大题集训练,练就慧眼和规范,占领高考制胜点!1.已知数列an满足an=2an-1+2n-1(n2),且a4=81.(1)求数列an的前三项a1,a2,a3.s(2)求证:数列为等差数列,并求an.【解析】(1)由an=2an-1+2n-1(n2),得a4=2a3+24-1=81,所以a3=33,同理a2=13,a1=5.(2)由an=2an-1+2n-1(n2),得=+1,所以-=1,=2,所以是以2为首项,以1为公差的等差数列.所以=2+(n-1)1=n+1,所以an=(n+1)2n+1.2.设数列an的前n项和为Sn,满足2Sn=an+1-2n+1+1,nN*,且a1,a2+5,a3成等差数列.(1)若a1=1,求数列an的通项公式.(2)证明:对一切正整数n,有+2,即3n-2n2n,所以,所以+1+=1+.关闭Word文档返回原板块