1、课题:指数与指数幂的运算(2) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:1知识与技能:(1)理解分数指数幂和根式的概念; (2)掌握分数指数幂和根式之间的互化; (3)掌握分数指数幂的运算性质; (4)培养学生观察分析、抽象等的能力.2过程与方法:通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂的性质.3情态与价值 (1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(3)让学生体验数学的简洁美和统一美.修改与创新教学重点:(1)分数指数幂和根式概念的理解;
2、 (2)掌握并运用分数指数幂的运算性质;教学难点:分数指数幂及根式概念的理解教学用具:多媒体教学方法:讲授法、讨论法、类比分析法及发现法教学过程:提问:1复习初中时的整数指数幂,运算性质?什么叫实数?有理数,无理数统称实数.2观察以下式子,并总结出规律:0 小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:即:为此,我们规定正数的分数指数幂的意义为:正数的定负分数指数幂的意义与负整数幂的意义相同.即:规定:0的正分数指数幂等于0,0的负分数指数幂无意义.说明:规定好分数指数
3、幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(1)(2)(3)若0,P是一个无理数,则P该如何理解?为了解决这个问题,引导学生先阅读课本即:的不足近似值,从由小于的方向逼近,的过剩近似值从大于的方向逼近.所以,当不足近似值从小于的方向逼近时,的近似值从小于的方向逼近.当的过剩似值从大于的方向逼近时,的近似值从大于的方向逼近,(如课本图所示) 所以,是一个确定的实数.一般来说,无理数指数幂是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.思考:的含义是什么?由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即:3例题(1)求值解: (2)用分数指数幂的形式表或下列各式(0)解: 分析:先把根式化为分数指数幂,再由运算性质来运算.补充练习:1. 计算:的结果2. 若小结:1分数指数是根式的另一种写法.2无理数指数幂表示一个确定的实数.3掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.作业: 教学反思: