1、 真题演练集训 1已知互相垂直的平面,交于直线l.若直线m,n满足m,n,则()Aml BmnCnl Dmn答案:C解析:因为l,所以l,又n,所以nl.故选C.2如图,已知ABC,D是AB的中点,沿直线CD将ACD翻折成ACD,所成二面角ACDB的平面角为,则()AADB BADBCACB DACB答案:B解析: AC和BC都不与CD垂直, ACB,故C,D错误当CACB时,容易证明ADB.不妨取一个特殊的三角形,如RtABC,令斜边AB4,AC2,BC2,如图所示,则CDADBD2,BDH120,设沿直线CD将ACD折成ACD,使平面ACD平面BCD,则90.取CD中点H,连接AH,BH,
2、则AHCD, AH平面BCD,且AH,DH1.在BDH中,由余弦定理可得BH.在RtAHB中,由勾股定理可得AB.在ADB中, AD2BD2AB220,可知cosADB0, ADB为钝角,故排除A.故选B.3,是两个平面,m,n是两条直线,有下列四个命题:如果mn,m,n,那么.如果m,n,那么mn.如果,m,那么m.如果mn,那么m与所成的角和n与所成的角相等其中正确的命题有_(填写所有正确命题的编号)答案:解析:对于命题,可运用长方体举反例证明其错误:如图,不妨设AA为直线m,CD为直线n,ABCD所在的平面为,ABCD所在的平面为,显然这些直线和平面满足题目条件,但不成立;命题正确,证明
3、如下:设过直线n的某平面与平面相交于直线l,则ln,由m知ml,从而mn,结论正确;由平面与平面平行的定义知,命题正确;由平行的传递性及线面角的定义知,命题正确4如图,在直三棱柱ABCA1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1DA1F,A1C1A1B1.求证:(1)直线DE平面A1C1F;(2)平面B1DE平面A1C1F.证明:(1)在直三棱柱ABCA1B1C1中,A1C1AC.在ABC中,因为D,E分别为AB,BC的中点,所以DEAC,于是DEA1C1.又DE平面A1C1F,A1C1平面A1C1F,所以直线DE平面A1C1F.(2)在直三棱柱ABCA1B1C1中
4、,A1A平面A1B1C1.因为A1C1平面A1B1C1,所以A1AA1C1.又A1C1A1B1,A1A平面ABB1A1 ,A1B1平面ABB1A1,A1AA1B1A1,所以A1C1平面ABB1A1.因为B1D平面ABB1A1,所以A1C1B1D.又B1DA1F,A1C1平面A1C1F,A1F平面A1C1F,A1C1A1FA1,所以B1D平面A1C1F.因为直线B1D平面B1DE,所以平面B1DE平面A1C1F.5如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF2FD,AFD90,且二面角DAFE与二面角CBEF都是60.(1)证明:平面ABEF平面EFDC;(2)求二
5、面角EBCA的余弦值(1)证明:由已知可得AFDF,AFFE,所以AF平面EFDC.又AF平面ABEF,故平面ABEF平面EFDC.(2)解:过D作DGEF,垂足为G,由(1)知DG平面ABEF.以G为坐标原点,的方向为x轴正方向,|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知DFE为二面角DAFE的平面角,故DFE60,则DF2,DG,可得A(1,4,0),B(3,4,0),E(3,0,0),D(0,0,)由已知,ABEF,所以AB平面EFDC.又平面ABCD平面EFDC CD,故ABCD,CDEF.由BEAF,可得BE平面EFDC,所以CEF为二面角CBEF的平面角,CEF6
6、0.从而可得C( 2,0,)连接AC,则(1,0,),(0,4,0),(3,4,),(4,0,0)设n(x,y,z)是平面BCE的法向量,则即所以可取n(3,0,)设m是平面ABCD的法向量,则同理可取m(0,4)则cosn,m.故二面角EBCA的余弦值为. 课外拓展阅读 立体几何证明问题中的转化思想如图所示,M,N,K分别是正方体ABCDA1B1C1D1的棱AB,CD,C1D1的中点求证:(1)AN平面A1MK;(2)平面A1B1C平面A1MK.(1)要证线面平行,需证线线平行;(2)要证面面垂直,需证线面垂直,要证线面垂直,需证线线垂直(1)如图所示,连接NK.在正方体ABCDA1B1C1
7、D1中,四边形AA1D1D,DD1C1C都为正方形,AA1DD1,AA1DD1,C1D1CD,C1D1CD.N,K分别为CD,C1D1的中点,DND1K,DND1K,四边形DD1KN为平行四边形KNDD1,KNDD1,AA1KN,AA1KN.四边形AA1KN为平行四边形,ANA1K.A1K平面A1MK,AN平面A1MK,AN平面A1MK.(2)如图所示,连接BC1.在正方体ABCDA1B1C1D1中,ABC1D1,ABC1D1.M,K分别为AB,C1D1的中点,BMC1K,BMC1K.四边形BC1KM为平行四边形,MKBC1.在正方体ABCDA1B1C1D1中,A1B1平面BB1C1C,BC1平面BB1C1C,A1B1BC1.MKBC1,A1B1MK.四边形BB1C1C为正方形,BC1B1C.MKB1C.A1B1平面A1B1C,B1C平面A1B1C,A1B1B1CB1,MK平面A1B1C.又MK平面A1MK,平面A1B1C平面A1MK.方法点睛1线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理2线线关系是线面关系、面面关系的基础证明过程中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例,证明垂直时常用的等腰三角形的中线等3证明过程一定要严谨,使用定理时要对照条件,步骤书写要规范