1、概率0432.甲、乙两台机床相互没有影响地生产某种产品,甲机床产品的正品率是0.9,乙机床产品的正品率是0.95()从甲机床生产的产品中任取3件,求其中恰有2件正品的概率(用数字作答);()从甲、乙两台机床生产的产品中各任取1件,求其中至少有1件正品的概率(用数字作答)本小题考查互斥事件、相互独立事件的概率等基础知识,及分析和解决实际问题的能力33.甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.两甲,乙两袋中各任取2个球.()若n=3,求取到的4个球全是红球的概率;()若取到的4个球中至少有2个红球的概率为,求n.本题主要考察排列组合、概率等基本知
2、识,同时考察逻辑思维能力和数学应用能力。解:(I)记“取到的4个球全是红球”为事件.(II)记“取到的4个球至多有1个红球”为事件,“取到的4个球只有1个红球”为事件,“取到的4个球全是白球”为事件.由题意,得 所以,化简,得解得,或(舍去),故 .34.甲、乙、丙三人在同一办公室工作。办公室只有一部电话机,设经过该机打进的电话是打给甲、乙、丙的概率依次为、。若在一段时间内打进三个电话,且各个电话相互独立。求:()这三个电话是打给同一个人的概率;()这三个电话中恰有两个是打给甲的概率;35.粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为,若一个坑内至少有1粒种子发芽,则这个坑不
3、需要补种;若一个坑内的种子都没发芽,则这个坑需要补种。()求甲坑不需要补种的概率;()求3个坑中恰有1个坑不需要补种的概率;()求有坑需要补种的概率。(精确到)()解:因为甲坑内的3粒种子都不发芽的概率为,所以甲坑不需要补种的概率为 ()解:3个坑恰有一个坑不需要补种的概率为 ()解法一:因为3个坑都不需要补种的概率为,所以有坑需要补种的概率为 解法二:3个坑中恰有1个坑需要补种的概率为恰有2个坑需要补种的概率为 3个坑都需要补种的概率为 36.甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为0.6本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束设各局比赛相互间没有影响
4、,求:37.设甲、乙、丙三台机器是否需要照顾相互之间没有影响。已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,()求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;()计算这个小时内至少有一台需要照顾的概率.解:()记甲、乙、丙三台机器在一小时需要照顾分别为事件A、B、C,1分则A、B、C相互独立,由题意得:P(AB)=P(A)P(B)=0.05P(AC)=P(A)P(C)=0.1P(BC)=P(B)P(C)=0.1254分解得:P(A)=0.2;P(B)=0.25;P(C)=0.5 所以, 甲、乙、丙每台机器在这个小时内需要照顾的概率分别是0.2、0.25、0.56分()A、B、C相互独立,相互独立,7分甲、乙、丙每台机器在这个小时内需都不需要照顾的概率为10分这个小时内至少有一台需要照顾的概率为12分38.甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率, (I)甲恰好击中目标的2次的概率; (II)乙至少击中目标2次的概率; (III)求乙恰好比甲多击中目标2次的概率