1、数列111某企业2003年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n年(今年为第一年)的利润为500(1+)万元(n为正整数).()设从今年起的前n年,若该企业不进行技术改造的累计纯利润为An万元,进行技术改造后的累计纯利润为Bn万元(须扣除技术改造资金),求An、Bn的表达式;()依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?本小题主要考查建立函数关系式、数列求和、
2、不等式的等基础知识,考查运用数学知识解决实际问题的能力.满分12分.2已知(I)已知数列极限存在且大于零,求(将A用a表示);(II)设(III)若都成立,求a的取值范围.本小题主要考查数列、数列极限的概念和数学归纳法,考查灵活运用数学知识分析问题和解决问题的能力,满分14分.(III)(i)当n=1时结论成立(已验证).(ii)假设当故只须证明即n=k+1时结论成立.根据(i)和(ii)可知结论对一切正整数都成立.故3. 某市2003年共有1万辆燃油型公交车。有关部门计划于2004年投入128辆电力型公交车,随后电力型公交车每年的投入比上一年增加50%,试问:该市在2010年应该投入多少辆电力型公交车?到哪一年底,电力型公交车的数量开始超过该市公交车总量的?4. 已知数列(1)证明(2)求数列的通项公式an.方法二:用数学归纳法证明:1当n=1时,; 2假设n=k时有成立, 令,在0,2上单调递增,所以由假设有:即也即当n=k+1时 成立,所以对一切 (2)下面来求数列的通项:所以,又bn=1,所以