ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:47.93KB ,
资源ID:1210871      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1210871-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((新教材)2022版高考数学人教B版一轮复习课时练15 利用导数研究函数的单调性 WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

(新教材)2022版高考数学人教B版一轮复习课时练15 利用导数研究函数的单调性 WORD版含解析.docx

1、课时规范练15利用导数研究函数的单调性基础巩固组1.函数f(x)=x3-ax为R上增函数的一个充分不必要条件是()A.a0B.a02.(2020山东青岛二中月考)已知定义域为R的函数f(x)的导数为f(x),且满足f(x)x2-1的解集是()A.(-,-1)B.(-1,+)C.(2,+)D.(-,2)3.(2020山东德州二模,8)已知函数f(x)的定义域为R,且f(x)+13ex的解集为()A.(1,+)B.(-,1)C.(0,+)D.(-,0)4.已知函数f(x)=lnxx,则()A.f(2)f(e)f(3)B.f(3)f(e)f(2)C.f(e)f(2)f(3)D.f(e)f(3)f(2

2、)5.(多选)(2020山东高三模拟,8)若定义在R上的函数f(x)满足f(0)=-1,其导函数f(x)满足f(x)m1,则下列成立的有()A.f1m1-mmB.f1m1m-1D.f1m-10,函数f(x)=2ax3-3(a2+1)x2+6ax-2.(1)讨论f(x)的单调性;(2)若f(x)在R上仅有一个零点,求a的取值范围.综合提升组9.已知函数f(x)=ax2-4ax-ln x,则f(x)在(1,3)上不具有单调性的一个充分不必要条件是()A.a-,16B.a-12,+C.a-12,16D.a12,+10.已知函数f(x)=aln x-2x,若不等式f(x+1)ax-2ex在x(0,+)

3、上恒成立,则实数a的取值范围是()A.(-,2B.2,+)C.(-,0D.0,211.(多选)(2020山东胶州一中模拟,11)已知定义在0,2上的函数f(x)的导函数为f(x),且f(0)=0,f(x)cos x+f(x)sin x0,则下列判断中正确的是()A.f60C.f63f3D.f42f312.(2020山东潍坊临朐模拟一,22)已知函数f(x)=mln x-x+mx(mR),讨论f(x)的单调性.创新应用组13.(2020山东潍坊临朐模拟一,8)已知奇函数f(x)的定义域为-2,2,其导函数为f(x),当0x2时,有f(x)cos x+f(x)sin x0成立,则关于x的不等式f(

4、x)2f4cos x的解集为()A.4,2B.-2,-44,2C.-4,00,4D.-4,04,214.设函数f(x)=aln x+x-1x+1,其中a为常数.(1)若a=0,求曲线y=f(x)在点(1,f(1)处的切线方程;(2)讨论函数f(x)的单调性.参考答案课时规范练15利用导数研究函数的单调性1.B函数f(x)=x3-ax为R上增函数的充要条件是f(x)=3x2-a0在R上恒成立,所以a(3x2)min.因为(3x2)min=0,所以a0.而(-,0)(-,0.故选B.2.D令g(x)=f(x)-x2,则g(x)=f(x)-2xx2-1可化为f(x)-x2-1,而g(2)=f(2)-

5、22=3-4=-1,所以不等式可化为g(x)g(2),故不等式的解集为(-,2).故选D.3.C令g(x)=f(x)+1ex,f(x)+10,故g(x)在R上单调递增,且g(0)=3,由f(x)+13ex,可得f(x)+1ex3,即g(x)g(0),所以x0,故选C.4.Df(x)=1-lnxx2(x0),当x(0,e)时,f(x)0;当x(e,+)时,f(x)f(3)f(2).故选D.5.AC设g(x)=f(x)-mx,则g(x)=f(x)-m0,故g(x)=f(x)-mx在R上单调递增.因为1m0,所以g1mg(0),故f1m-1-1,即f1m0,而1-mm1-mm,故A正确,B错误.因为

6、1m-10,所以g1m-1g(0),故f1m-1-mm-1-1,即f1m-11m-10,故C正确,D错误.故选AC.6.(1,2f(x)=12x2-9lnx,f(x)=x-9x(x0),当x-9x0时,有00且a+13,解得10有解,即a2x-4ex有解.令g(x)=2x-4ex,则g(x)=2-4ex.令g(x)=0,解得x=-ln2.函数g(x)=2x-4ex在(-,-ln2)上单调递增;在(-ln2,+)上单调递减.所以当x=-ln2时,g(x)=2x-4ex取得最大值-2-2ln2,所以a-2-2ln2.8.解(1)f(x)=6ax2-6(a2+1)x+6a=6(x-a)(ax-1),

7、由f(x)=0,得x=a或x=1a.当0aa.所以当x1a时,f(x)0,从而f(x)在(-,a),1a,+上单调递增;当ax1a时,f(x)1时,a1a.所以当xa时,f(x)0,从而f(x)在-,1a,(a,+)上单调递增;当1axa时,f(x)0,从而f(x)在1a,a上单调递减.综上,当0a1时,f(x)在-,1a,(a,+)上单调递增,在1a,a上单调递减.(2)f(a)=-a4+3a2-2=(a2-1)(2-a2),f1a=1-1a2.当0a1时,f(a)0,f1a0,所以f(x)仅在1a,+上有一个零点,因此0a1时,f1a0,所以要满足题设须有f(a)0,从而2-a20,解得1

8、a2,因此1a0,g(1)g(3)0,解得a16.而12,+-,-1216,+,故选D.10.Af(ex)=ax-2ex,所以f(x+1)ax-2ex在(0,+)上恒成立,等价于f(x+1)f(ex)在(0,+)上恒成立.因为当x(0,+)时,1x+11时,f(x)0恒成立,即当x1时,ax2恒成立,所以a2.故选A.11.CD令g(x)=f(x)cosx,x0,2,则g(x)=f(x)cosx+f(x)sinxcos2x.因为f(x)cosx+f(x)sinx0,所以g(x)=f(x)cosx+f(x)sinxcos2xg4,即f(6)cos6f(4)cos4,即f662f4,故A错误;又因

9、为f(0)=0,所以g(0)=f(0)cos0=0,所以g(x)=f(x)cosx0在0,2上恒成立,因为ln30,2,所以fln3g3,所以f(6)cos6f(3)cos3,即f63f3,故C正确;又因为g4g3,所以f(4)cos4f(3)cos3,即f42f3,故D正确.故选CD.12.解由题意得x(0,+),f(x)=mx-1-mx2=-x2-mx+mx2.令g(x)=x2-mx+m,=m2-4m=m(m-4).当0m4时,0,g(x)0恒成立,则f(x)0,f(x)在(0,+)上单调递减.当m0,函数g(x)与x轴有两个不同的交点x1,x2(x1x2),x1+x2=m0,x1x2=m

10、0,则x10.所以当x0,m+m2-4m2时,g(x)0,则f(x)在0,m+m2-4m2上单调递增;当xm+m2-4m2,+时,g(x)0,f(x)4时,0,函数g(x)与x轴有两个不同的交点x1,x2(x10,x1x2=m0,则x10,x20.所以f(x)在0,m-m2-4m2,m+m2-4m2,+上单调递减;在m-m2-4m2,m+m2-4m2上单调递增.综上所述,当0m4时,f(x)在(0,+)上单调递减;当m4时,f(x)在0,m-m2-4m2上单调递减,在m-m2-4m2,m+m2-4m2,m+m2-4m2,+上单调递减.13.A根据题意,设g(x)=f(x)cosx,其导数为g(

11、x)=f(x)cosx+f(x)sinxcos2x.因为当0x2时,f(x)cosx+f(x)sinx0,所以当0x2时,g(x)0,则函数g(x)在0,2上单调递减.又因为f(x)为定义域为-2,2的奇函数,则g(-x)=f(-x)cos(-x)=-f(x)cosx=-g(x),则函数g(x)为奇函数,所以函数g(x)在-2,2上为减函数.f(x)2f4cosx,即f(x)cosx2f4,即f(x)cosxf(4)cos4,即g(x)g4.所以4x0,所以函数f(x)在(0,+)上单调递增.当a0时,令g(x)=ax2+2(a+1)x+a,则=4(a+1)2-4a2=4(2a+1).()当a

12、-12时,0,所以g(x)0,于是f(x)0,所以函数f(x)在(0,+)上单调递减.()当-12a0,此时g(x)=0有两个不相等的实数根,分别是x1=-(a+1)+2a+1a,x2=-(a+1)-2a+1a,x10,x1x2=10,可得0x1x2.当0xx2时,有g(x)0,f(x)0,所以函数f(x)在(0,x1),(x2,+)上单调递减;当x1x0,f(x)0,所以函数f(x)在(x1,x2)上单调递增.综上所述,当a0时,函数f(x)在(0,+)上单调递增;当a-12时,函数f(x)在(0,+)上单调递减;当-12a0时,函数f(x)在0,-(a+1)+2a+1a,-(a+1)-2a+1a,+上单调递减,在-(a+1)+2a+1a,-(a+1)-2a+1a上单调递增.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3